
Programming Cryptography
without Programming
Cryptography

Elaine Shi

In 2014, I taught smart contract
programming to undergraduate

students.

Smart contract programming:
you are programming a

distributed system

Smart contract

Smart contract

Rock-paper-scissors:
“Hello World” for smart contract programming

Rock-paper-scissors:
“Hello World” for smart contract programming

Smart contract

Rock-paper-scissors:
“Hello World” for smart contract programming

Smart contract

Rock-paper-scissors:
“Hello World” for smart contract programming

Smart contract

Rock-paper-scissors:
“Hello World” for smart contract programming

Smart contract

Rock-paper-scissors:
students’ solution

Is this secure?

can choose input based on ‘s input

Use a commit-and-open protocol

… commitment should be non-malleable

Smart contract

Commit phase

Open phase

Smart contract

Lesson learned:

Even the “Hello World” for distributed
programming is hard!

Distributed programming often
involves cryptography.

Can we let ordinary
programmers program

cryptography without
programming cryptography

Our dream:

Programmer gives a high-level
specification with security annotations

Synthesize an efficient cryptographic
protocol

Two Challenges

Cryptography speaks the circuits,
not programs
 e.g., multi-party computation, zero-knowledge proofs

Choosing the right and most
efficient cryptographic primitive

Two Challenges

Cryptography speaks the circuits,
not programs
 e.g., multi-party computation, zero-knowledge proofs

Choosing the right and most
efficient cryptographic primitive

Compiling programs to multi-party
computation (MPC) protocols

Joint work with Chang Liu,
Michael Hicks, and others

Example: Joint Clinical Study

MPC: learn only the outcome and nothing else

MPC: learn only the outcome and nothing else

AI program

Security: as secure as using an ideal functionality

program for the ideal functionality

Our compiler

Efficient MPC implementation

Programs

Dynamic memory
accesses

Circuits

Static wiring

Binary search: access patterns depend
on query

func search(val, s, t)
mid = (s + t)/2
if val < mem[mid]

search (val, 0, mid)
else search (val, mid+ 1, t)

Programs

Dynamic memory
accesses

Circuits

Static wiring

Naive idea 1 (secure but inefficient)
Use a linear-scan circuit to implement every
memory access

Ex
ec

ut
io

n
or

de
r

Naive idea 2 (efficient but insecure)
Each step of the computation is a circuit,
each circuit reads and writes memory

Ex
ec

ut
io

n
or

de
r

Oblivious RAM
Memory accesses do NOT leak information

Ex
ec

ut
io

n
or

de
r

Oblivious RAM
Memory accesses do NOT leak information
Each step ⇒ poly log circuits

Signal, a private messaging app with >40
million monthly active users,

runs the Path ORAM
algorithm!

Naive idea: Put everything in ORAM

In practice, not all data
must be placed in ORAM

Accesses that do not depend on
secret inputs need not be hidden

Example: FindMax

int max(public int n, secret int h[]) {
public int i = 0;
secret int m = 0;
while (i < n) {

if (h[i] > m) then m = h[i];
i++;

}
return m;

}

int max(public int n, secret int h[]) {
public int i = 0;
secret int m = 0;
while (i < n) {

if (h[i] > m) then m = h[i];
i++;

}
return m;

}

h[i] need not be in ORAM.
Encryption suffices.

Example: FindMax

for(int i=1; i<n; ++i) {
 int bestj = -1;
 for(int j=0; j<n; ++j)

if(!vis[j] && (bestdis < 0 || dis[j] < bestdis))
bestdis = dis[j];

 vis[bestj] = 1;
 for(int j=0; j<n; ++j)

if(!vis[j] && (bestdis + e[bestj][j] < dis[j]))
 dis[j] = bestdis + e[bestj][j];

}

Example: Main loop in Dijkstra

dis[]: not in ORAM
vis[], e[][]: in ORAM

for(int i=1; i<n; ++i) {
 int bestj = -1;
 for(int j=0; j<n; ++j)

if(!vis[j] && (bestdis < 0 || dis[j] < bestdis))
bestdis = dis[j];

 vis[bestj] = 1;
 for(int j=0; j<n; ++j)

if(!vis[j] && (bestdis + e[bestj][j] < dis[j]))
 dis[j] = bestdis + e[bestj][j];

}

We built a compiler to automate this analysis

dis[]: not in ORAM
vis[], e[][]: in ORAM

Efficient
Oblivious Stack

O
ObliVM Hand- ORAM
 Optimized

Gatesx103

1%
difference

A Stack
Example

Compile

Automated, w/o ORAM

Hand optimizedObliVM

Automated, w/ ORAM, no compile-time opt.

Streaming
Algorithms
eps=0.001,r=10

Machine Learning
N=220

Graph Algorithms
V=216

Data Structures
N=220,D=10

#AND gates

1% difference
between ObliVM

and hand-optimized

Memory-trace oblivious type system

Memory-trace oblivious type system

Information
flow type
system

Memory
trace

oblivious
type system

Data sent to “low
outputs” does not
depend on secret
inputs.

A program’s
memory traces do
not depend on
secret inputs.

Type system
captures
traces

Front-end
Compiler

Non-specialist
programmer

Source
program

Back-end
Compiler #1

Back-end
Compiler #2

Secure
computation

protocol

ORAM-based
secure

processor
Oblivious

representation

ObliVM: a programming framework for
oblivious computation

More details in our papers
Memory Trace Oblivious Program Execution.
Joint with Chang Liu and Mike Hicks.

ObliVM: A Programming Framework for Secure
Computation. Joint with Chang Liu, Xiao Shaun Wang, Kartik Nayak,
and Yan Huang.

GhostRider: A Hardware-Software System for
Memory Trace Oblivious Computation. Joint with Chang
Liu, Michael Hicks, Austin Harris, Mohit Tiwari, Martin Maas.

Our related works

xjSNARK: Optimizing compiler for ZKP

Cool subsequent work by others

A Language for Probabilistically
Oblivious Computation, POPL’20

By David Darais, Ian Sweet, Chang Liu, and Michael Hicks

Two Challenges

Cryptography speaks the circuits,
not programs

Choosing the right and most
efficient cryptographic primitive

Viaduct:
automatically synthesizing
cryptographic protocols

Joint work with Coşku Acay, Rolph Recto, Joshua Gancher, and Andrew C. Myers

What if the programmer doesn’t
know which cryptographic
primitive to use?

5
2

Implementing Shell with FLAM annotations

“Endorse” raises the integrity label

host Alice // dealer
host Bob // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
 let guess = endorse (input Bob) to Alice
 let win = declassify (guess == shell) to Alice ∨ Bob
 output win to Alice, Bob

5
4

Prevent dealer from
changing shell

host Alice // dealer
host Bob // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
 let guess = endorse (input Bob) to Alice
 let win = declassify (guess == shell) to Alice ∨ Bob
 output win to Alice, Bob

5
5

A: private and trusted to A

A∧B←: private to A, trusted by A and B

“Endorse” raises the integrity label

5
6

Allow player to
read valid

host Alice // dealer
host Bob // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
 let guess = endorse (input Bob) to Alice
 let win = declassify (guess == shell) to Alice ∨ Bob
 output win to Alice, Bob

“Declassify” downgrades the privacy label

host Alice // dealer
host Bob // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
 let guess = endorse (input Bob) to Alice
 let win = declassify (guess == shell) to Alice ∨ Bob
 output win to Alice, Bob

5
7

A∧B←:
private to A, trusted by A and B

(A→∧B→)∧(A←∧B←):A and B can see,
trusted by A and B

“Declassify” downgrades the privacy label

5
8

Reveal the result

host Alice // dealer
host Bob // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
 let guess = endorse (input Bob) to Alice
 let win = declassify (guess == shell) to Alice ∨ Bob
 output win to Alice, Bob

“Declassify” downgrades the privacy label

host Alice // dealer
host Bob // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
 let guess = endorse (input Bob) to Alice
 let win = declassify (guess == shell) to Alice ∨ Bob
 output win to Alice, Bob

5
9

Synthesis: partitioning the program

Who should execute this?

host Alice // dealer
host Bob // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
 let guess = endorse (input Bob) to Alice
 let win = declassify (guess == shell) to Alice ∨ Bob
 output win to Alice, Bob

6
0

Synthesis: partitioning the program

Who should execute this?

Alice ?

host Alice // dealer
host Bob // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
 let guess = endorse (input Bob) to Alice
 let win = declassify (guess == shell) to Alice ∨ Bob
 output win to Alice, Bob

6
1

Synthesis: partitioning the program

Who should execute this?

Alice ?

Bob ?

host Alice // dealer
host Bob // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
 let guess = endorse (input Bob) to Alice
 let win = declassify (guess == shell) to Alice ∨ Bob
 output win to Alice, Bob

6
2

Synthesis: partitioning the program

Who should execute this?

MPC

host Alice // dealer
host Bob // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
 let guess = endorse (input Bob) to Alice
 let win = declassify (guess == shell) to Alice ∨ Bob
 output win to Alice, Bob

6
3

Synthesis: partitioning the program

MPC

Naive synthesis:
execute entire program in MPC!

Secure

Inefficient

Avoid using crypto

Use cheaper crypto

… while respecting security

e.g. commitment < ZKP < MPC

e.g. local execution or replicated execution

host Alice // dealer
host Bob // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
 let guess = endorse (input Bob) to Alice
 let win = declassify (guess == shell) to Alice ∨ Bob
 output win to Alice, Bob

6
6

A more efficient synthesis

A performs ZKP

Think of crypto as “principals”

MPC: A∧B neither can see, trusted by A and B

ZKP : A∧B←
(by A)

private to A, trusted by A and B

commit: A∧B←
(by A)

private to A, trusted by A and B

Lattice defines an ordering
among principals

MPC: A∧B neither can see, trusted by A and B

ZKP : A∧B←
(by A)

private to A, trusted by A and B

⇒
⇒ ⇒

 A B

⇒ “acts for”

Viaduct

Performance profiles

Principal label

Computational
capability

Optimized
partitioning

Program-to-circuit
compiler

Optimized cryptographic
implementationSynthesis pipeline

Check out our open-source
implementation

https://viaduct-lang.org

Compiler correctness

Open questions

Compiler correctness

Open questions

More expressive performance profiles
e.g., bandwidth vs compute
 boolean vs numeric computation
 prover vs verifier time

Compiler correctness

Open questions

More expressive performance profiles

Utilize “hand-optimized” capabilities
e.g., private set intersection

Compiler correctness

Open questions

More expressive performance profiles

Utilize “hand-optimized” capabilities

Reason about other security properties
e.g., fairness

Thank you! runting@cs.cmu.edu

