
Programming Cryptography 
without Programming 
Cryptography

Elaine Shi 



In 2014, I taught smart contract 
programming to undergraduate 

students.



Smart contract programming: 
you are programming a 

distributed system



Smart contract
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Rock-paper-scissors: 
“Hello World” for smart contract programming
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Rock-paper-scissors: 
“Hello World” for smart contract programming

Smart contract



Rock-paper-scissors: 
students’ solution



Is this secure?



can choose input based on           ‘s input



Use a commit-and-open protocol

… commitment should be non-malleable



Smart contract

Commit phase



Open phase

Smart contract



Lesson learned: 

Even the “Hello World” for distributed 
programming is hard!

Distributed programming often 
involves cryptography.



Can we let ordinary 
programmers program 

cryptography without 
programming cryptography



 

Our dream:

Programmer gives a high-level 
specification with security annotations

Synthesize an efficient cryptographic 
protocol



Two Challenges

Cryptography speaks the circuits, 
not programs
 e.g., multi-party computation, zero-knowledge proofs

Choosing the right and most 
efficient cryptographic primitive
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Compiling programs to multi-party 
computation (MPC) protocols

Joint work with Chang Liu, 
Michael Hicks, and others



Example: Joint Clinical Study



MPC: learn only the outcome and nothing else



MPC: learn only the outcome and nothing else



AI program

Security: as secure as using an ideal functionality 



program for the ideal functionality

Our compiler

Efficient MPC implementation



Programs

Dynamic memory 
accesses

Circuits

Static wiring



Binary search: access patterns depend 
on query

func search(val, s, t)
mid = (s + t)/2
if val < mem[mid] 

search (val, 0, mid)
else search (val, mid+ 1, t)



Programs

Dynamic memory 
accesses

Circuits

Static wiring

Naive idea 1 (secure but inefficient)
Use a linear-scan circuit to implement every 
memory access
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Naive idea 2 (efficient but insecure)
Each step of the computation is a circuit, 
each circuit reads and writes memory
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Oblivious RAM 
Memory accesses do NOT leak information
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Oblivious RAM 
Memory accesses do NOT leak information
Each step ⇒ poly log circuits



Signal, a private messaging app with >40 
million monthly active users, 

runs the Path ORAM 
algorithm!



Naive idea:  Put everything in ORAM



In practice, not all data 
must be placed in ORAM

Accesses that do not depend on 
secret inputs need not be hidden



Example: FindMax

int max(public int n, secret int h[]) {
public int i = 0;
secret int m = 0;
while (i < n) {

if (h[i] > m) then m = h[i];
i++; 

}
return m;

}



int max(public int n, secret int h[]) {
public int i = 0;
secret int m = 0;
while (i < n) {

if (h[i] > m) then m = h[i];
i++; 

}
return m;

}

h[i] need not be in ORAM.
Encryption suffices.

Example: FindMax



for(int i=1; i<n; ++i) {
    int bestj = -1;
    for(int j=0; j<n; ++j)

if(!vis[j] && (bestdis < 0 || dis[j] < bestdis))
bestdis = dis[j];

    vis[bestj] = 1;
    for(int j=0; j<n; ++j)

if(!vis[j] && (bestdis + e[bestj][j] < dis[j]))
    dis[j] = bestdis + e[bestj][j];

}

Example: Main loop in Dijkstra

dis[]:  not in ORAM
vis[], e[][]:  in ORAM



for(int i=1; i<n; ++i) {
    int bestj = -1;
    for(int j=0; j<n; ++j)

if(!vis[j] && (bestdis < 0 || dis[j] < bestdis))
bestdis = dis[j];

    vis[bestj] = 1;
    for(int j=0; j<n; ++j)

if(!vis[j] && (bestdis + e[bestj][j] < dis[j]))
    dis[j] = bestdis + e[bestj][j];

}

We built a compiler to automate this analysis

dis[]:  not in ORAM
vis[], e[][]:  in ORAM



Efficient  
Oblivious Stack

O
ObliVM       Hand-          ORAM
                 Optimized

# Gatesx103

1% 
difference

A Stack 
Example

Compile



Automated, w/o ORAM

Hand optimizedObliVM

Automated, w/ ORAM, no compile-time opt.

Streaming 
Algorithms
eps=0.001,r=10

Machine Learning
N=220 

Graph Algorithms
V=216

Data Structures
N=220,D=10

#AND gates

1% difference 
between ObliVM

and hand-optimized



Memory-trace oblivious type system 



Memory-trace oblivious type system 

Information 
flow type 
system

Memory
trace 

oblivious 
type system

Data sent to “low 
outputs” does not 
depend on secret 
inputs. 

A program’s 
memory traces do 
not depend on 
secret inputs.

Type system 
captures 
traces



Front-end 
Compiler

Non-specialist
programmer

Source 
program

Back-end 
Compiler #1

Back-end 
Compiler #2

Secure 
computation 

protocol

ORAM-based 
secure 

processor
Oblivious 

representation

ObliVM: a programming framework for 
oblivious computation



More details in our papers
Memory Trace Oblivious Program Execution.
Joint with Chang Liu and Mike Hicks.

ObliVM: A Programming Framework for Secure 
Computation. Joint with Chang Liu, Xiao Shaun Wang, Kartik Nayak, 
and Yan Huang.

GhostRider: A Hardware-Software System for 
Memory Trace Oblivious Computation. Joint with Chang 
Liu, Michael Hicks, Austin Harris, Mohit Tiwari, Martin Maas.



Our related works

xjSNARK:  Optimizing compiler for ZKP



Cool subsequent work by others 

A Language for Probabilistically 
Oblivious Computation,    POPL’20

By David Darais, Ian Sweet, Chang Liu, and Michael Hicks



Two Challenges

Cryptography speaks the circuits, 
not programs

Choosing the right and most 
efficient cryptographic primitive



Viaduct: 
automatically synthesizing 
cryptographic protocols 

Joint work with Coşku Acay, Rolph Recto, Joshua Gancher, and Andrew C. Myers



What if the programmer doesn’t 
know which cryptographic 
primitive to use?
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Implementing Shell with FLAM annotations



“Endorse” raises the integrity label

host Alice    // dealer
host Bob     // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
  let guess = endorse (input Bob) to Alice
  let win = declassify (guess == shell) to Alice ∨ Bob
  output win to Alice, Bob

5
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Prevent dealer from 
changing shell



host Alice    // dealer
host Bob     // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
  let guess = endorse (input Bob) to Alice
  let win = declassify (guess == shell) to Alice ∨ Bob
  output win to Alice, Bob

5
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A: private and trusted to A

A∧B←: private to A, trusted by A and B

“Endorse” raises the integrity label



5
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Allow player to 
read valid

host Alice    // dealer
host Bob     // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
  let guess = endorse (input Bob) to Alice
  let win = declassify (guess == shell) to Alice ∨ Bob
  output win to Alice, Bob

“Declassify” downgrades the privacy label



host Alice    // dealer
host Bob     // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
  let guess = endorse (input Bob) to Alice
  let win = declassify (guess == shell) to Alice ∨ Bob
  output win to Alice, Bob
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A∧B←: 
private to A, trusted by A and B

(A→∧B→)∧(A←∧B←):A and B can see, 
trusted by A and B

“Declassify” downgrades the privacy label
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Reveal the result

host Alice    // dealer
host Bob     // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
  let guess = endorse (input Bob) to Alice
  let win = declassify (guess == shell) to Alice ∨ Bob
  output win to Alice, Bob

“Declassify” downgrades the privacy label



host Alice    // dealer
host Bob     // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
  let guess = endorse (input Bob) to Alice
  let win = declassify (guess == shell) to Alice ∨ Bob
  output win to Alice, Bob
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Synthesis:  partitioning the program

Who should execute this?



host Alice    // dealer
host Bob     // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
  let guess = endorse (input Bob) to Alice
  let win = declassify (guess == shell) to Alice ∨ Bob
  output win to Alice, Bob

6
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Synthesis:  partitioning the program

Who should execute this?

Alice ?



host Alice    // dealer
host Bob     // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
  let guess = endorse (input Bob) to Alice
  let win = declassify (guess == shell) to Alice ∨ Bob
  output win to Alice, Bob
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Synthesis:  partitioning the program

Who should execute this?

Alice ?

Bob ?



host Alice    // dealer
host Bob     // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
  let guess = endorse (input Bob) to Alice
  let win = declassify (guess == shell) to Alice ∨ Bob
  output win to Alice, Bob

6
2

Synthesis:  partitioning the program

Who should execute this?

MPC



host Alice    // dealer
host Bob     // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
  let guess = endorse (input Bob) to Alice
  let win = declassify (guess == shell) to Alice ∨ Bob
  output win to Alice, Bob

6
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Synthesis:  partitioning the program

MPC



Naive synthesis: 
execute entire program in MPC!

Secure

Inefficient



Avoid using crypto

Use cheaper crypto

… while respecting security

e.g. commitment < ZKP < MPC

e.g. local execution or replicated execution



host Alice    // dealer
host Bob     // player

let shell = endorse (input Alice) to Bob
let valid = declassify (0 ≤ shell ≤ 2) to Bob
if valid:
  let guess = endorse (input Bob) to Alice
  let win = declassify (guess == shell) to Alice ∨ Bob
  output win to Alice, Bob

6
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A more efficient synthesis

A performs ZKP



Think of crypto as “principals”

MPC: A∧B         neither can see, trusted by A and B

ZKP : A∧B←         
(by A)

private to A, trusted by A and B

commit: A∧B←         
(by A)

private to A, trusted by A and B



Lattice defines an ordering 
among principals

MPC: A∧B         neither can see, trusted by A and B

ZKP : A∧B←         
(by A)

private to A, trusted by A and B

⇒
⇒ ⇒

            A        B         

⇒ “acts for”



Viaduct

Performance profiles

Principal label

Computational 
capability

Optimized 
partitioning

Program-to-circuit 
compiler

Optimized cryptographic 
implementationSynthesis pipeline



Check out our open-source 
implementation 

https://viaduct-lang.org



Compiler correctness

Open questions



Compiler correctness

Open questions

More expressive performance profiles
e.g., bandwidth vs compute
        boolean vs numeric computation
        prover vs verifier time



Compiler correctness

Open questions

More expressive performance profiles

Utilize “hand-optimized” capabilities
e.g., private set intersection



Compiler correctness

Open questions

More expressive performance profiles

Utilize “hand-optimized” capabilities

Reason about other security properties
e.g., fairness



Thank you!    runting@cs.cmu.edu


