
Segue & ColorGuard:
Optimizing SFI Performance and Scalability on Modern x86

Shravan Narayan†‡ Tal Garfinkel† Evan Johnson† David Thien† Joey Rudek†

Michael LeMay? Anjo Vahldiek-Oberwagner? Dean Tullsen† Deian Stefan†

†UC San Diego ?Intel Labs ‡UT Austin

Abstract
WebAssembly (Wasm) and similar Software-based Fault

Isolation (SFI) systems enable secure sandboxing by virtu-
alizing process address space. They accomplish this by: (1)
adding a base address to the operand of all load/store in-
structions to select a sandbox, and (2) enforcing isolation
by trapping out-of-bounds memory accesses using regions of
unmapped memory (guard regions). Leveraging modern x86
hardware, we offer two optimizations to this.

With Segue, we observe that x86-64 segmentation can be
used to remove most of the cost of SFI base addition, resulting
in speedups ranging from 13.8% for SPECint® 2006 to 11.2%
for font rendering in Firefox.

With ColorGuard, we note that MPK-based page color-
ing can be used to reclaim the virtual address space wasted
by guard regions. This results in a 11.91× increase in the
number of concurrent Wasm instances a process can sup-
port — reducing context switch overheads, load imbalances,
and other inefficiencies that detract from the performance of
high-scale edge computing platforms.

1 Introduction

WebAssembly (Wasm) is an essential part of the software
ecosystem. It runs on billions of browsers around the world,
supporting applications ranging from Zoom [6] and Figma [8]
to Photoshop [32] and Google Earth [31]. Firefox relies on
it to sandbox untrusted native libraries [10, 23]. It enables
safe extensibility in the data center via infrastructure like
Istio [28] and server-side applications like Shopify [5]. Si-
multaneously, Wasm is enabling a new generation of high-
scale, low-latency, function-as-a-service (FaaS) edge com-
puting platforms such as Fastly’s Compute@Edge [27] and
Cloudflare’s Workers [18].

Wasm relies on Software-based Fault Isolation (SFI) [35]
to enforce memory isolation. We offer two optimizations —
Segue and ColorGuard — that improve SFI performance and
scalability.

The key to improving performance is reducing instrumenta-
tion overhead. SFI enforces isolation by instrumenting every
memory operation in an application. These operations are
often part of the application’s critical path; thus, reducing
instrumentation overhead in even small ways enhances per-
formance in a wide range of workloads, such as those on the
client-side web.

The key to improving scalability (i.e., how many instances
we can run in a process) is tied to how Wasm is used server-
side in high-scale FaaS platforms such as Cloudflare’s and
Fastly’s. These systems spin up a new Wasm instance in
response to every network request—and handle massive num-
bers of requests concurrently. Wasm’s fast startup times (30
µs [26]) and low context switch overheads [19] (2-3 orders of
magnitude cheaper than OS context switches [15]) are critical
for enabling this. To maximize efficiency, FaaS providers want
to minimize the number of OS-level worker processes needed
to run Wasm instances—this reduces OS context switch over-
heads, prevents load imbalances, and enables efficient com-
munication between instances [7].

This paper introduces Segue and ColorGuard to improve
SFI performance and scalability by leveraging the unique
features of modern x86 processors.

With Segue, we note that all SFI instrumentation has two
steps. First, a base address (e.g., the start of a Wasm linear
memory) is added to the operand of a memory operation, (e.g.,
an i32.load in Wasm). Second, a bounds check is performed.
This is similar to a segmented memory system. It turns out that
the x86-64 ISA retains a vestige of x86 segmentation support;
thus, by moving our base address to a segment register and
using segment relative addressing (e.g., as part of the x86 mov
that implements an i32.load), we can eliminate at least one
instruction, free up a general purpose register, and even free
an operand slot in our x86 mov operation (that was previously
used for base addition). This gives the compiler more freedom
to efficiently allocate resources, resulting in speedups ranging
from 5.4%-38% depending on the workload (see § 3).

With ColorGuard, we note that all production Wasm im-
plementations rely on a large address space (4GB) and guard

1



1 // loads ptr + offset from the base of
the Wasm heap↪→

2 #define wasm_read64(ptr, offset) ...
3 #define wasm_read64(ptr)

wasm_read64(ptr, 0)↪→

4

5 u64 ptr = ...; // ptr as 64-bit int
6 // make ptr a 32-bit offset, then read
7 u64 a = wasm_read64(trunc32(ptr));
8 u32 arr = ...; // an array in the heap
9 u32 idx = ...; // index into the array

10 // access arr + idx
11 u64 b = wasm_read64(arr, idx);

(a) Example code snippet
.

1 ; rax = wasm_base, rbx = ptr
2 ; rcx = arr, rdx = idx
3

4 ; trunc32(ptr)
5 mov ebx, ebx
6 ; load wasm_base + ptr
7 mov r10, [rax + rbx]
8 ; trunc32(arr + idx)
9 add ecx, edx

10 ; load wasm_base + arr + idx
11 mov r11, [rax + rcx]

(b) Compiled w/o Segue
.

1 ; gs_base = wasm_base
2 ; rbx = ptr
3 ; rcx = arr, rdx = idx
4

5 ; load wasm_base + trunc32(ptr)
6 mov r10, [gs: ebx]
7 ; load wasm_base + trunc32(arr +

idx)↪→

8 mov r11, [gs: ecx + edx]

(c) Compiled w/Segue
.

Figure 1: Segue in Practice: Our code snippet illustrates how two common code patterns can compile more efficiently with Segue, an
integer-to-pointer conversion followed by a read, and a read through an array index. Without Segue we can see that each pattern takes two
instructions, and consumes a general purpose register(rax) to store the linear memory base. With Segue each pattern takes a single instruction,
and consumes one less register rax, and frees an operand slot (the instruction in (c) on line 6 only uses one register).
.

region (4GB) per instance to enforce bounds without the need
for explicit bounds checks [1, 2]. While this is fast, it also
wastes large amounts of virtual address space and limits the
total number of instances per process to roughly 16K. Us-
ing MPK-based page coloring, we can eliminate most of the
guard regions and reduce address space sizes to closer to what
applications actually consume. In FaaS workloads, where ad-
dress space consumption of at most a few hundred megabytes
is common, this offers a 11.91× increase in the number of
instances we can pack into a single process.

We present these two techniques in the next section. In § 3
we evaluate the performance of these techniques in production
Wasm toolchains. We survey some related work in § 4 and
conclude in § 5.

2 Design

We briefly describe how SFI works in WebAssembly (§ 2.1),
then explore how we optimize it with Segue (§ 2.2) and Col-
orGuard (§ 2.3).

2.1 SFI in WebAssembly

WebAssembly (Wasm) enables multiple isolated execution
environments (sandboxes) within a single process address
space. Memory isolation is enforced on 32-bit address spaces,
called linear memories.

A Wasm load or store takes two 32-bit unsigned operands.
A Wasm compiler will generate code to add these operands
(resulting in a 33bit address), and add the result to a 64bit
base address (the start of the linear memory for a particular
sandbox), presumably perform a bounds check, then finally
do the load or store with the computed address.

However, bounds checks are expensive [37], which is why
they are rarely done in practice. Instead, production Wasm
implementations generally enforce bounds implicitly using
a system of large address spaces and guard regions—they
combine a 4 GB linear memory address space and a following
4 GB unmapped memory region (a guard region). Thus, by
construction, any 33bit unsigned offset plus the base address
will be within 8GB of the base, and any access beyond the
first 32-bit (4GB) address space will trap.

For the purpose of our discussion, two details here are
important. First is the base addition step, which we largely
optimize away with Segue. Second is the 8GB per-instance
requirement, which we reduce with ColorGuard.

2.2 Reducing SFI overhead with Segue
Segue is an optimization for WebAssembly that leverages the
partial support for segmentation in x86-64 CPUs. Historically,
segmentation support started with the 8086 to expand memory
beyond 16-bit addressing, was extended to support protection
in the 80286, and grew to support 32-bit addressing [4].

Segmentation allowed applications to define segments —
regions of memory identified by a start address (the base) and
a size (limit) — for different portions of application memory
such as the stack, heap, code, etc. Segmented applications
expressed memory addresses as offsets into segments, rely-
ing on the hardware to convert each offset into a full global
address (by adding the base), and to check that each offset is
below the segment limit.

Segmentation, however, never found broad adoption in the
most popular 32-bit operating systems. Instead, the large ad-
dress spaces supported by 32-bit processors led to flat address-
ing being sufficient for a time. When applications finally did
outgrow 32-bit addressing, the flat addressing model persisted

2



in x86-64. Support for segmentation was largely dropped in
64-bit mode. However, two segment registers (%FS and %GS)
were enhanced in x86-64 to support 64-bit base addresses.
Modern operating systems dedicate one of these registers to
thread level storage (TLS), and the unused register (e.g., %GS
on Linux) is free for other uses.

Segue leverages the available segment register to optimize
base address addition in Wasm by storing the Wasm linear
memory base in this register. Segue performs all Wasm linear
memory accesses using segment-relative addressing1.

Despite this hardware functionality existing in all x86-64-
compatible CPUs for more than a decade, and the requirement
for converting relative offsets in data structures for managed
runtimes existing even longer, no Wasm runtime currently
uses this approach. Prior 32-bit SFI implementations like
vx32 [9] and NaCl [36] leveraged x86-32 segmentation to
support efficient isolation—however, with the changes in x86-
64, segmentation was no longer perceived to be useful beyond
optimizing TLS. We offer the observation that this hardware is
still beneficial today. We use Wasm as an initial example, but
this technique could potentially generalize to other managed
runtimes.

To see how Segue can benefit Wasm compilation, consider
Figure 1. Figure 1a offers an example of two common ways
a program might access memory. The first read (line 7 in
Figure 1a) is a simple access into Wasm’s heap from some
previously calculated address. Looking at Figure 1b (which
shows this code compiled without Segue), we can see the
compiler must first use an instruction to truncate the 64-bit
value ptr to 32 bits (Wasm heaps are a maximum of 4GB), and
then use another instruction to add the Wasm linear memory
base and access the memory. Back in Figure 1a, the second
read on line 11 is accessing an array element, which similarly
requires 2 instructions in Figure 1b.

If we instead compile with the Segue optimization (Fig-
ure 1c), we can see the following benefits:

I Segue frees up a general purpose register (GPR), so it
can be used for other computations. Today, Wasm com-
pilers use a register to store the heap base. In Figure 1b
we can see rax being used for this purpose, and how
Segue uses the otherwise unused gs instead in Figure 1c.

I Segue frees an operand slot in complex x86 memory
addresses. x86 supports a variety of memory address
formats that can specify complex address calculations.
Wasm compilers today must reserve one of these operand
slots to specify the Wasm base as shown in lines 7 and
11 in Figure 1b (base is stored in register rax). Thus, the
compiler cannot use this slot for other inline addition.
In our example, we can see how this forces the Wasm

1x86-64 allows specifying a prefix on memory instructions to indicate
that the access is relative to the %GS segment. As of Ivy Bridge (2011), Intel®
also added user space instructions to set the segment base without expensive
system calls.

compiler to use two separate instructions, first to add
the values for arr and idx, and then separately perform
the memory access (lines 9 and 11 in Figure 1b). Segue
restores the operand slot and allows this operation in a
single instruction(line 8 in Figure 1c).

I Segue truncates segment offsets to enforce Wasm bounds.
Wasm compilers today must calculate machine addresses
using 64-bit input values, because the Wasm linear mem-
ory base is 64 bits wide, and register operands of differ-
ent sizes cannot be mixed in x86 memory operands. For
example, in Figure 1a on line 7, we must use rbx (a 64-
bit register) as the parameter when adding to rax. Thus,
we must have a prior instruction for truncation (on line
5) to 32-bits (required because the Wasm address space
is 4GB). With Segue, we use a particular x86 prefix to
override the default address size and instead cause the
segment offset to be limited to 32 bits. This truncation
occurs within the mov instruction directly, as is apparent
from its use of ebx in line 6 in Figure 1c.

These three benefits allow Wasm compilers to more ef-
ficiently use registers and emit instructions, which in turn
speeds up computations. The only added cost is a slight in-
crease in the size of memory instructions when using the %GS
prefix and address size override prefix (x86 instructions are
variable length). However, we believe in general the benefits
outweigh this.

2.3 Improving Scalability with ColorGuard
While 64-bit address spaces may seem nearly unlimited, they
are not. Intel® 64-bit CPUs only support a 48-bit address
space2, and only 47 bits are available to user space applica-
tions [17]. As each Wasm sandbox requires 8GB of address
space, we can only create 247/8GB sandboxes per process—
roughly 16K.

Production FaaS services that use Wasm, such as Fastly,
are already bumping up against this limit [26]. Running more
sandboxes requires instantiating more processes. This in-
creases overhead, as process context switches are expensive,
and splitting Wasm instances across processes induces load
imbalances and increases communication overheads between
instances [7]. Unfortunately, this is only likely to get worse in
the future. For example, the Wasm component model [34] is
likely to significantly increase the number of desired instances
for a given application. Thus, we must address the cause of
this limit.

The main culprit is the memory footprint of Wasm sand-
boxes, which as already noted, demands 8GB for each in-
stance, including the linear allocated space and guard page.
This means, for example, that even if a sandbox uses only

2While some high-end server-class Intel® CPUs support a 52/57-bit
address spaces, this is available only in a small fraction of CPUs

3



8GB

Sandbox 1

GuardPage 1

Sandbox 2

GuardPage 2

Colorguard

Sandbox 1
Sandbox 2
Sandbox 3
Sandbox 4
Sandbox 5
Sandbox 6
Sandbox 7
Sandbox 8
Sandbox 9

...
Sandbox n

GuardPage-
Based SFI Color

1
2

8
1

n%8
GuardPage

Figure 2: When using 1GB sandboxes, ColorGuard packs 8x as
many sandboxes in the same region as traditional guard-page based
SFI. Doing so is safe, since MPK enforces that sandboxes only access
same-colored sandboxes, and ColorGuard ensures that same-colored
sandboxes are 8GB away from each other.

1GB of memory, it still needs to reserve (but not necessarily
commit) 8GB, wasting 78.5% of its assigned address space.
In practice, Wasm instances in FaaS settings rarely exceed a
few hundred megabytes [7].

Efficiently Packing Sandboxing with ColorGuard. To rec-
tify this problem, we present ColorGuard, an optimization that
efficiently packs sandboxes in memory by leveraging Memory
Protection Keys (MPK) [17]. MPK is a recent x86 hardware
feature 3 that adds thread-specific, hardware-enforced page
permissions to the virtual memory systems.

MPK allows applications to assign a 4-bit tag (called a
domain or color) to page table entries (PTEs) via system
calls. The application can then manage which colors a thread
has access to completely in userspace via the pkru register—
pkru updates are very fast (roughly 25 cycles [25])—enabling
rapid transitions between different protection mappings.

ColorGuard leverages MPK to increase the maximum num-
ber of sandboxes that can be run in an 8GB address range by
a theoretical maximum of 15× (although in practice, we see a
maximum of 11.91× as discussed in §3.2). The key intuition
behind ColorGuard is that sandbox B’s working memory can
be used as sandbox’s A’s guard region, so long as A is a dif-
ferent color than B, ensuring that any access by A to B will
trap.

To achieve this property, ColorGuard uses MPK to stripe
memory such that nearby sandboxes have different colors. We
see this illustrated in Figure 2 which contrasts the memory
layouts of sandboxes using traditional guard regions with
sandboxes using ColorGuard.

More precisely, ColorGuard requires every sandbox that
occupies memory in the 8GB following the first sandbox use
a different color for its linear memory; all other memory (in-

3MPK in this paper can refer to Page Protection Keys support, which was
added to Intel® server-class systems as of Skylake (2017) and clients as of
Tiger Lake (2020), or to Memory Protection Keys support that was added by
AMD in EPYC Milan (2021).

cluding the memory belonging to the host application) is com-
pletely unchanged and assigned the default MPK color (0).

We see this illustrated in Figure 2. Here, each sandbox has a
1GB linear memory and uses one of eight MPK colors to stripe
the 7GB region following the end of sandbox 1—offering an
8x increase in sandbox density. In our example, any out-of-
bounds memory access from sandbox 1 would trap as it would
hit a region with a different color. We could further increase
density to 15×, by using all of MPK’s colors and creating
smaller sandboxes, i.e., for sandboxes of 8GB/15≈ 550MB.

Finally, we note that this striping pattern scales up to any
number of sandbox chains — sandboxes that are placed in
adjacent memory regions. We only need guard pages in a
sandbox chain in two instances: (1) after the final sandbox to
ensure the last sandbox in the chain is protected, and (2) if 15
consecutive sandboxes use less than 8 GB combined, we’ll
need a guard page before using the first color again. We also
note that clever sandbox runtimes can also chain sandboxes of
different sizes to efficiently use colors and possibly eliminate
the second case; we leave such explorations to future work.

3 Evaluation

To evaluate the overhead of Segue and ColorGuard, we im-
plement them in two Wasm compilers used in production
today, then evaluate each mechanism on applicable bench-
mark suites.

Segue focuses on improving the performance of SFI; we
thus benchmark it in the Wasm2c compiler [1] used by Firefox
to efficiently sandbox buggy dependencies [16]. On the other
hand, ColorGuard addresses scalability; we thus evaluate it
in the Wasmtime compiler [2] used by cloud platforms like
Fastly to sandbox computations from different clients in a
cloud server.

Implementing Segue in Wasm2c. Wasm2c compiles Wasm
by transpiling it to a limited subset of C which can then be
compiled with a standard C compiler. We modified Wasm2c
so that accesses to the heap were performed using a segment
register. Specifically, our version of Wasm2c emits C code that
relies on a GNU-extension called named address spaces [11];
this extension allows pointers in C to indicate that they belong
to a particular segment. We then compile the emitted C code
with Clang to get a native binary4.

Implementing ColorGuard in Wasmtime. Implementing
ColorGuard only required making three simple changes to
the Wasmtime code to manage MPK domains. The first two
changes (1) generate MPK keys on Wasmtime startup and (2)
stripe memory by assigning these keys to alternating memory
regions as described in Section 2.3. The third and final change

4While GCC also supports the named address spaces extension, we ob-
served that GCC’s support was not robust, and using the extension often
caused the compiler to crash during compilation.

4



0%

20%

40%

60%

80%

100%

120%

140%

ac
ke

rm
an

n
ba

se
64

ct
yp

e

fib
2

gi
m

li
ke

cc
ak

m
em

m
ov

e
m

in
ic

sv
ne

st
ed

lo
op

ra
nd

om
ra

te
lim

it
si

ev
e

sw
itc

h
xb

la
bl

a2
0

xc
ha

ch
a2

0

N
or

m
al

iz
ed

 r
un

tim
e

Stock Segue

Figure 3: Sightglass performance of stock Wasm and Wasm with
Segue. Segue speeds up computation by up to 38%, with median
5.4%. The one exception is the minicsv benchmark which incurs a
slowdown of 8.4%.

is to update the MPK permissions prior to entering a sandbox
so that the sandbox is only permitted to access its colors.
Setup. Segue benchmarks are run on an Intel Skylake i7-
6700K (4 GHz) with 64 GB of RAM, running Ubuntu 20.04.5
LTS, with both frequency scaling and hyperthreading disabled.
We also pin benchmarks to a single CPU that is isolated from
other processes with CPU shield. ColorGuard benchmarks are
run on an Intel Tigerlake i7-1165G7 (2.80GHz) with 16GB of
RAM, with MPK support and running Ubuntu 22.04.1 LTS.

3.1 Evaluating Segue
To evaluate the performance benefits of Segue, we test the
performance with three benchmarks/benchmark suites:

I SPECint® 2006 is a popular set of CPU performance
benchmarks representing single-thread, computation-
heavy execution. We use the subset of SPEC’s inte-
ger benchmarks which are Wasm-compatible (following
Narayan et. al [24]). Notably, we opt for SPEC CPU®
2006 over SPEC CPU® 2017 due to the latter’s increased
memory requirements that regularly exceed Wasm’s 33-
bit address space.

I Sightglass is a suite used by members of the Bytecode
Alliance, an organization that develops standards and
tools for Wasm. It contains various short, “black-boxed”
cryptographic, mathematical, and general-purpose pro-
grams typically executed in a WebAssembly environ-
ment.

I Firefox’s font rendering is performed using an un-
trusted library, libgraphite [13], which is sandboxed
using Wasm to ensure that any memory safety errors
are contained. We measure the performance of font ren-
dering by recording the time taken to reflow text on a
webpage ten times with different sizes.

Analysis. Across all benchmarks, Segue tends to offer marked
speedups over the default guard page mechanism. In the long-
running SPEC benchmarks, Segue’s median speedup is 7.8%;

40
1_b

zip
2

42
9_m

cf

43
3_m

ilc

44
4_n

am
d

44
5_g

ob
mk

45
8_s

jen
g

46
2_l

ibq
ua

ntu
m

46
4_h

26
4re

f

47
0_l

bm

47
3_a

sta
r

Geo
mea

n
0%

50%

100%

150%

No
rm

al
ize

d 
ru

nt
im

e Stock Segue

Figure 4: SPEC CPU® 2006 performance of stock Wasm and Wasm
with Segue. Segue speeds up computation by up to 13.8%, with
median 7.8% and geometric mean 6%. The one exception is the
444_namd benchmark which incurs a slowdown of 6.3%.

Stock Segue

Font render 2263 ms 2010 ms

Table 1: Firefox font rendering performance when compiling
libgraphite to stock Wasm and Wasm with Segue. Segue speeds
up computation by 11.2%.

in Sightglass, we see a 5.4% median speedup; and in the
Firefox font rendering benchmark, we see a 11.2% speedup.
We also observe from Table 2, that the binary size of the
SPEC CPU® 2006 benchmarks are a median 7.1% smaller
when using Segue. This is because of the more efficient code
generation patterns discussed in §2.2.

We note that in both SPEC and Sightglass, one benchmark
(444.namd and minicsv, respectively) incurs a slowdown (of
6.3% and 8.4%) when using Segue. We believe this could be
because of the increase in memory instruction size to specify
the use of %GS via Intel® prefix mechanism. While Table 2
indicates that Segue generates smaller code overall, the same
fact may not hold true when measuring a few instructions in
the tight inner loops of these benchmarks. If this expanded
instruction size (and resulting instruction cache degradation)
is not balanced by the other performance wins of Segue, the
result is some performance overhead. To avoid these over-
heads, one could modify the compiler to choose between the
Segue approach and an explicit base addition using a cost
function. We leave this to future work.

3.2 ColorGuard
To evaluate the scalability benefits of ColorGuard, we create
a custom benchmark that tests scaling of sandbox creation in
the Wasmtime compiler and runtime. This benchmark simu-
lates the high-scaling environment of an edge platform which
must spawn tens of thousands of small sandboxes in a single
process to sandbox computations from different clients [26].
Specifically, our benchmark instantiates 1024 512 MB sand-
boxes at a time until the runtime (using either traditional guard
pages or ColorGuard) fails to mmap space for a new sandbox.
We find that the upstream Wasmtime implementation that uses

5



Stock Segue Binary size reduction

bzip2 356 KB 336 KB 6.0%
mcf 280 KB 272 KB 2.9%
milc 540 KB 504 KB 7.1%

namd 844 KB 780 KB 8.2%
gobmk 4464 KB 4272 KB 4.5%
sjeng 532 KB 496 KB 7.3%

libquantum 336 KB 324 KB 3.7%
h264ref 1352 KB 1200 KB 12.7%

lbm 280 KB 272 KB 2.9%
astar 404 KB 380 KB 6.3%

Table 2: Compiled binary sizes of the SPEC benchmarks comparing
stock Wasm and Wasm with Segue. Segue decreases binary size by
a median of 7.1%.

guard pages can allocate 21504 sandboxes before exhausting
the address space. Using ColorGuard, Wasmtime is instead
able to instantiate 256000 sandboxes, an 11.91× increase in
address space density.

4 Related Work

The designs of Segue and ColorGuard draw upon a long
history of SFI research.

SFI techniques and their cost The first instance of SFI
was developed by Wahbe et al. [35]. Both Wahbe’s implemen-
tation and subsequent work [9, 14, 22, 29, 30] incurred per-
formance overheads between 20% and 30%. As a result, tech-
niques have been developed to optimize these overheads [38]
through static analysis. In contrast to these approaches, Segue
removes overheads by leveraging hardware.

Various SFI systems have used x86-32 segmentation for
sandboxing on 32-bit platforms [9, 19, 36]. However, using
32-bit segmentation in modern systems is infeasible as it
requires sharing a 4GB address space across all running sand-
boxes. In contrast, Segue demonstrates how we can extract
the benefits of segmentation even on 64-bit platforms.

SFI systems have used other CPU features to improve per-
formance as well, for example Intel® Memory Protection
Extensions (MPX) [20], MPK [15, 33], Intel® protection
rings [21], virtualization [3, 12, 15], and ARM’s memory
domains [39]. However, use of such hardware comes at a
cost. MPX has overheads comparable to software implemen-
tations [20], and MPK is restricted to 15 domains when di-
rectly used to sandboxed code [33]. Meanwhile, while ring,
virtualization and Memory Domains incur expensive con-
text switches due to ring/privilege switches [17]. In contrast,
Segue allows SFI compilers to leverage hardware without
incurring such extra costs.

Reducing register pressure in SFI compilers Register
pressure has been a recurring source of performance degra-
dation in SFI systems. Wahbe et al.’s SFI implementation

on MIPS and Alpha machines reserved four and five reg-
isters respectively out of the available 32. Reserving these
registers increased pressure on the remaining registers, which
caused up to a 10% penalty on their benchmarks. Subsequent
work [22, 29, 30] optimized SFI schemes so that they only
reserved one register. However, for platforms like x86 and
x86-64 which support only 8 and 16 general purpose registers
respectively, this still produces significant register pressure.
Segue takes the final step in reducing register pressure and
reduces the number of reserved general purpose registers to
zero, allowing for more efficient SFI implementations.

Guard pages and scaling in SFI tools Guard pages have
long been used in SFI systems, and they have long been a bot-
tleneck for scaling. For example, Wahbe et al. [35] used guard
regions to protect the stack, and NaCl64 [29] used 80GB
guard regions to optimize heap accesses. NaCl64’s 80GB
guard pages eliminate bounds checks but cost the system its
scalability: indeed, these limit it to only 255 sandboxes [23].

Limited hardware resources have also caused scalability
problems in SFI systems. For example, SFI tools that solely
rely on MPK [15, 33] to enforce memory isolation have trou-
ble scaling due to the limited size of the PKRU register. Since
the PKRU only supports 16 domains, these systems cannot
use more than 16 sandboxes, or they suffer expensive domain
evictions which require swapping out pkeys of all pages be-
longing to a memory region [25]. In contrast, ColorGuard
improves scaling by combining classic SFI with MPK.

5 Conclusion

For decades, SFI was largely an academic curiosity. In the last
five years, WebAssembly has made it a critical technology
for the internet—used by billions of clients, and an increasing
number of servers around the world.

However, there are still limitations of Wasm that both con-
strain existing users and represent barriers to even greater
adoption: performance and scalability. Segue is a novel use
of existing Intel® hardware (segmentation) to bring down the
cost of an instrumented load to a single instruction (the same
as non-Wasm, non-SFI code).

ColorGuard uses a more recent Intel® feature (MPK) to
enable guarded sandbox instances to be packed more densely,
in the best case by more than an order of magnitude.

Acknowledgements

This work was supported in part by a Sloan Research Fellow-
ship; by the NSF under Grant Numbers CNS-2155235 and
CAREER CNS-2048262; by gifts from Google and Intel; and
by DARPA HARDEN under contract N66001-22-9-4017.

6



References

[1] wasm2c. https://github.com/WebAssembly/wabt/tree/master/wasm2c,
2018.

[2] Wasmtime. https://wasmtime.dev, 2021.

[3] A. Belay, A. Bittau, A. J. Mashtizadeh, D. Terei, D. Mazières, and C. Kozyrakis.
Dune: Safe user-level access to privileged CPU features. In OSDI. USENIX,
2012.

[4] J. H. Crawford and P. P. Gelsinger. Programming the 80386. Sybex Books, 1987.

[5] Duncan Uszkay. How Shopify uses WebAssembly outside of the browser. http
s://shopify.engineering/shopify-webassembly, 2020.

[6] Dylan Schiemann. Zoom on web: WebAssembly SIMD, WebTransport, and We-
bCodecs. https://www.infoq.com/news/2020/08/zoom-web-chrome-api
s/.

[7] Engineers at large (anonymized for submission). private communication.

[8] Evan Wallace. WebAssembly cut Figma’s load time by 3x. https://www.figm
a.com/blog/webassembly-cut-figmas-load-time-by-3x/, 2017.

[9] B. Ford and R. Cox. Vx32: Lightweight user-level sandboxing on the x86. In
Proceedings of USENIX ATC 2008. USENIX, 2008.

[10] N. Froyd. Securing Firefox with WebAssembly. https://hacks.mozilla.or
g/2020/02/securing-firefox-with-webassembly/, 2020.

[11] Gcc. Named address spaces. https://gcc.gnu.org/onlinedocs/gcc-9.1
.0/gcc/Named-Address-Spaces.html.

[12] N. Goonasekera, W. Caelli, and C. Fidge. LibVM: an architecture for shared
library sandboxing. Software: Practice and Experience, 45(12), 2015.

[13] Graphite - A free and open rendering engine for complex scripts. http://scri
pts.sil.org/RenderingGraphite, 2012.

[14] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,
L. Wagner, A. Zakai, and J. Bastien. Bringing the web up to speed with we-
bassembly. In PLDI. ACM, 2017.

[15] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen, and
M. Marty. Hodor: Intra-process isolation for high-throughput data plane libraries.
In 2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA,
USA, July 10-12, 2019. USENIX Association, 2019.

[16] B. Holley. WebAssembly and back again: Fine-grained sandboxing in Firefox
95. https://hacks.mozilla.org/2021/12/webassembly-and-back-aga
in-fine-grained-sandboxing-in-firefox-95/, Nov. 2021.

[17] Intel® 64 and IA-32 architectures software developer’s manual, 2020.

[18] Kenton Varda. WebAssembly on Cloudflare Workers. https://blog.cloudfl
are.com/webassembly-on-cloudflare-workers/, 2018.

[19] M. Kolosick, S. Narayan, C. Watt, M. LeMay, D. Garg, R. Jhala, and D. Stefan.
Isolation without taxation: Near zero cost transitions for sfi. In Proceedings of the
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL).
ACM, January 2022.

[20] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos. No need to
hide: Protecting safe regions on commodity hardware. In EuroSys. ACM, 2017.

[21] H. Lee, C. Song, and B. B. Kang. Lord of the x86 rings: A portable user
mode privilege separation architecture on x86. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages 1441–
1454, 2018.

[22] S. McCamant and G. Morrisett. Evaluating SFI for a CISC architecture. In
Security. USENIX, 2006.

[23] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner,
H. Shacham, and D. Stefan. Retrofitting fine grain isolation in the Firefox ren-
derer. In SEC. USENIX, 2020.

[24] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang,
A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. Tullsen, et al. Swivel: Hard-
ening {WebAssembly} against spectre. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1433–1450, 2021.

[25] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim. libmpk: Software abstraction for
intel memory protection keys (intel mpk). In Proceedings of the USENIX Annual
Technical Conference (ATC), pages 241–254, 2019.

[26] Pat Hickey. Announcing Lucet: Fastly’s native WebAssembly compiler and run-
time. https://www.fastly.com/blog/announcing-lucet-fastly-nati
ve-webassembly-compiler-runtime, 2019.

[27] Pat Hickey. How Fastly and the developer community are investing in the We-
bAssembly ecosystem. https://www.fastly.com/blog/how-fastly-and
-developer-community-invest-in-webassembly-ecosystem, 2020.

[28] Pengyuan Bian. Istio and Envoy WebAssembly extensibility, one year on. https:
//istio.io/latest/blog/2021/wasm-progress/, 2021.

[29] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee, and
B. Chen. Adapting software fault isolation to contemporary CPU architectures.
In Security. USENIX, 2010.

[30] G. Tan. Principles and implementation techniques of software-based fault isola-
tion. Foundations and Trends in Privacy and Security, 1(3), 2017.

[31] Thomas Nattestad. WebAssembly brings Google Earth to more browsers. https:
//blog.chromium.org/2019/06/webassembly-brings-google-earth-to
-more.html, 2019.

[32] N. Thomas Nattestad. Photoshop’s journey to the web. https://web.dev/ps
-on-the-web/, 2022.

[33] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Druschel,
and D. Garg. ERIM: Secure, efficient in-process isolation with protection keys
(MPK). In Security. USENIX, 2019.

[34] L. Wagner. Component model design and specification. https://github.com
/WebAssembly/component-model.

[35] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-based
fault isolation. In SOSP. ACM, 1993.

[36] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native Client: A sandbox for portable, untrusted
x86 native code. In S&P. IEEE, 2009.

[37] A. Zakai. Wasmboxc: Simple, easy, and fast vm-less sandboxing. https://kr
ipken.github.io/blog/wasm/2020/07/27/wasmboxc.html, 2020.

[38] B. Zeng, G. Tan, and G. Morrisett. Combining control-flow integrity and static
analysis for efficient and validated data sandboxing. In CCS, 2011.

[39] Y. Zhou, X. Wang, Y. Chen, and Z. Wang. Armlock: Hardware-based fault isola-
tion for arm. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014. ACM,
2014.

7

https://github.com/WebAssembly/wabt/tree/master/wasm2c
https://wasmtime.dev
https://shopify.engineering/shopify-webassembly
https://shopify.engineering/shopify-webassembly
https://www.infoq.com/news/2020/08/zoom-web-chrome-apis/
https://www.infoq.com/news/2020/08/zoom-web-chrome-apis/
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/
https://gcc.gnu.org/onlinedocs/gcc-9.1.0/gcc/Named-Address-Spaces.html
https://gcc.gnu.org/onlinedocs/gcc-9.1.0/gcc/Named-Address-Spaces.html
http://scripts.sil.org/RenderingGraphite
http://scripts.sil.org/RenderingGraphite
https://hacks.mozilla.org/2021/12/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/
https://hacks.mozilla.org/2021/12/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
https://istio.io/latest/blog/2021/wasm-progress/
https://istio.io/latest/blog/2021/wasm-progress/
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html
https://web.dev/ps-on-the-web/
https://web.dev/ps-on-the-web/
https://github.com/WebAssembly/component-model
https://github.com/WebAssembly/component-model
https://kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html
https://kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html

	Introduction
	Design
	SFI in WebAssembly
	Reducing SFI overhead with Segue
	Improving Scalability with ColorGuard

	Evaluation
	Evaluating Segue
	ColorGuard

	Related Work
	Conclusion

