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Abstract
Progress has recently been made on specifying instruction
set architectures (ISAs) in executable formalisms rather than
through prose. However, to date, those formal specifications
are limited to the functional aspects of the ISA and do not
cover its security guarantees. We present a novel, general
method for formally specifying an ISA’s security guarantees
so that they (1) can be semi-automatically verified to hold
for the ISA functional semantics, producing a high-assurance
mechanically-verifiable proof, and (2) support informal and
formal reasoning about security-critical software in the pres-
ence of adversarial code. Our method leverages universal
contracts: software contracts that express bounds on the au-
thority of arbitrary untrusted code. Universal contracts can
be kept agnostic of software abstractions, and can strike the
right balance between requiring sufficient detail for reasoning
about software and preserving implementation freedom of
ISA designers and CPU implementers. We semi-automatically
verify universal contracts against SAIL implementations of
ISA semantics using our KATAMARAN tool; a semi-automatic
separation logic verifier for SAIL which produces machine-
checked proofs for successfully verified contracts. We demon-
strate the generality of our method by applying it to two ISAs
that offer very different security primitives: (1) MINIMAL-
CAPS: a custom-built capability machine ISA and (2) a (some-
what simplified) version of RISC-V with PMP. We verify a
femtokernel using the security guarantee we’ve formalized
for RISC-V with PMP. For now, we focus on direct channels
and integrity guarantees but we explain how the method can
be extended to other guarantees in the future.

1 Introduction

An instruction set architecture (ISA) is a contract between
software and hardware designers, defining the syntax, seman-
tics, and properties of machine code. Architecture manuals
have traditionally specified the ISA informally through prose.
Such ISA specifications can be imprecise, omit details, and

offer no means to test or verify advertised guarantees, which
is particularly important for the ISA’s security features. In
support of disambiguation, testability, experimentation, and
formal study, a recent trend is to instead use formal and exe-
cutable ISA specifications [Armstrong et al., 2019, Bourgeat
et al., 2021, Dasgupta et al., 2019, Flur et al., 2016, Fox and
Myreen, 2010, Goel et al., 2017, Reid, 2017].

For instance, the SAIL [Armstrong et al., 2019] program-
ming language was designed specifically for specifying ISAs.
It is accompanied by a tool that can produce emulators, docu-
mentation, and proof assistant definitions from a SAIL spec-
ification. SAIL has been adopted by the RISC-V Founda-
tion for the official formal specification of RISC-V, an open
ISA based on established reduced instruction set comput-
ing (RISC) principles [Asanović and Patterson, 2014], and
is used for the development of the CHERI extensions [Wat-
son et al., 2020]. Furthermore, mature Sail specifications for
ARMv8a (mechanically translated from authoritative defini-
tions) and RISC-V are available. Such formal specifications
are necessary for formally verifying hardware (processors)
and software (compilers, programs written in assembly).

In addition to defining the semantics of their instructions,
ISA specifications also make meta-theoretical statements
about the guarantees upheld by their instructions. For ex-
ample, ISAs offering virtual memory typically guarantee that
user-mode code can only access memory that is reachable
through the page tables. Importantly, such guarantees are not
just descriptive statements that happen to hold for the current
version of the ISA, but prescriptive statements which are part
of the ISA contract; they must continue to hold for extensions,
future versions, and (extended) implementations of the ISA.
We consider the formalization of ISA guarantees, in contrast
to the traditional prose specification, vital to support reasoning
about security-critical code and validating ISA extensions.

In this paper, we are primarily interested in formalizing ISA
security guarantees about integrity through direct channels,
as a first step towards broader guarantees. In that sense, our
work is closely related to recent work on validating security
guarantees of capability machine ISAs [Bauereiss et al., 2022,
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Nienhuis et al., 2020] (see Section 8 for a thorough compari-
son). Less closely related are recent proposals to make ISAs
explicit about side-channel leakage [Ge et al., 2019, Guarnieri
et al., 2021], for which no guarantees are offered by current
ISA specifications, formal or informal.

Formalizing ISA security guarantees requires balancing re-
quirements of various stakeholders. On the one hand, ISA de-
signers and CPU manufacturers require specifications that are
abstract and agnostic of software abstractions. They need to
be able to easily validate ISAs and their extensions or updates
against the specifications, with maximum assurance. On the
other hand, authors of low-level software need specifications
that are sufficiently precise for reasoning about the security
properties of their code. Ideally, they should be able to com-
bine ISA security guarantees (which restrict the authority of
untrusted code) with manual reasoning about security-critical,
trusted code to obtain full-system security guarantees.

The main contribution of this paper is a general and tool-
supported method for formalizing ISA security guarantees,
resulting in specifications that are abstract enough to facilitate
validation of extensions and updates of the ISA, but that are
still sufficiently precise for reasoning about code. The method
is based on so-called universal contracts (UCs), which have
already been employed successfully for formalizing capability
safety of high-level languages [Devriese et al., 2016, Swasey
et al., 2017, Van Strydonck et al., 2019], as well as ISAs
[Georges et al., 2021b, Skorstengaard et al., 2018, Van Stry-
donck et al., 2021]. Universal contracts start from the obser-
vation that the ultimate goal of security primitives is to reason
about trusted code interacting with untrusted code. Essentially,
the idea is to work in a program logic for assembly code and
formulate ISA security guarantees as a universal contract:
a contract that applies to arbitrary —including untrusted—
code. This universal contract expresses the restrictions that
the ISA enforces on untrusted programs. The program logic
enables combining manually verified contracts for trusted
code with the universal contract for untrusted code, and prov-
ing properties about the combined program. Of course, it must
be verified that ISA instructions actually enforce the security
properties expressed by the universal contract.

In the context of ISAs, universal contracts have so far
only been used for capability machines, where the capability
safety property of custom simplified ISAs has been formal-
ized, proven, and applied as a universal contract [Georges
et al., 2021b, Skorstengaard et al., 2018, Van Strydonck et al.,
2021]. We propose universal contracts as a general approach
to formally capture the guarantees of more general ISA secu-
rity primitives, starting from existing operational semantics.
We demonstrate our approach by formalizing the intended
security properties for two quite different security primitives:
capability safety of a minimalistic capability machine, and
memory protection for a (somewhat simplified) version of
RISC-V with the Physical Memory Protection (PMP) exten-
sion and synchronous interrupts (i.e., exceptions). We prove

that the universal contracts hold for the SAIL-implemented
semantics, the official formal semantics in the case of RISC-V,
using a semi-automated approach that improves over the more
manual efforts employed so far. To achieve this, we provide a
tool called KATAMARAN: a semi-automatic separation logic
verifier for SAIL that automates most boilerplate reasoning in
the proofs, and allows focusing on the more interesting parts.
For now, this verification relies on some simplifications, most
importantly the use of unbounded integers, and we have not
yet automated the translation from SAIL to an internal core
calculus µSAIL. However, the verification tool itself is fully
verified, so that we obtain high-assurance guarantees in terms
of the µSAIL semantics.

To summarize, the contributions of this paper are:

• A general method based on universal contracts for for-
malizing security guarantees of ISAs w.r.t. the opera-
tional semantics of the specification language.

• KATAMARAN: a new semi-automatic tool for verifying
separation logic contracts on code in µSAIL (a new core
language for SAIL). KATAMARAN supports user-defined
abstract predicates, lemma invocations, and heuristics. It
also includes an automatic solver for pure verification
conditions. It is implemented and verified in Coq, based
on a general approach described elsewhere. Successful
verifications produce machine-checked proofs in an Iris-
based program logic that is itself proven sound against
the operational semantics of µSAIL.

• A demonstration of the method for two case studies. The
first is a minimal capability machine that is a subset
of CHERI-RISC-V [Watson et al., 2020]. The second
case study is a (somewhat simplified) version of the
official formal SAIL semantics of RISC-V with the PMP
extension.

• An evaluation of the required effort to validate a UC
security guarantee against the functional semantics of
an ISA, based on statistics about our two case studies.
We measure the amount of effort required to validate the
addition of an extra instruction. To assess the effective-
ness of Katamaran’s (semi-)automation, we compare the
MINIMALCAPS verification against a related but more
manual proof in Cerise [Georges et al., 2021b].

• An end-to-end verification demonstrating the usefulness
of contracts resulting from our method for reasoning
about security-critical code. For this purpose we verify
an example RISC-V program (called the Femtokernel)
that relies on the PMP security guarantees for securing
its internal state. It relies solely on the RISC-V PMP
universal contract to reason about the invocation of un-
trusted code.

The remainder of the paper is structured as follows: Sec-
tion 2 explains the security primitives used in our case studies,
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Figure 1: Concept of a capability

while Section 3 presents the general method for formalizing
security guarantees of ISAs, i.e., universal contracts. We dis-
cuss our new semi-automatic logic verifier, KATAMARAN,
in Section 4. In Section 5 and Section 6 we demonstrate the
universal contracts method by formalizing and verifying a uni-
versal contract for (1) a capability machine and (2) for RISC-V
with the PMP extension. We evaluate the effort required for
these cases in Section 7, where we also demonstrate the ver-
ification of a femtokernel relying on the security guarantee
we formalized for the RISC-V PMP case study. Finally, we
discuss related work in Section 8 and conclude in Section 9.

2 Background

In this section we cover the security primitives we use in our
case studies: capabilities and physical memory protection.

2.1 Capability Machines

Capability machines are a special type of processors that offer
capabilities. CHERI is a recent family of capability machine
ISA extensions, and includes the Morello ARM extension
which is being evaluated in realistic settings by a consortium
involving academia and industry [Watson et al., 2020]. Con-
ceptually, capabilities are tokens that carry authority to access
memory or an object. When capabilities represent software-
defined authority, like applying closures or invoking methods,
they are referred to as object capabilities.

Capabilities can be represented as a quadruple, (p,b,e,a),
consisting of the permission p of the capability, the begin
address b, the end address e, and a cursor a. Permissions on
a capability machine can include: the null permission O, the
read permission R, and the read and write permission RW .
Figure 1 illustrates that the range of authority of a capability
is [b,e] and that the cursor a denotes the memory location
pointed at by the capability. A special case is the permission
E, which models enter capabilities [Carter et al., 1994] 1. A
capability with this permission cannot be used to access mem-
ory but can only be jumped to, in which case its permission

1Also known as sentry capabilities in the context of CHERI [Watson et al.,
2020]

will change to R. When given to untrusted code, enter capa-
bilities represent a form of encapsulated closures: they can be
invoked by the untrusted code, but the caller cannot access the
callee’s private data and capabilities. As such, they setup a se-
curity boundary and can represent a form of software-defined
authority and as such they constitute what is generally called
an object capability.

The first case study in this paper is a custom-built capability
machine we call MINIMALCAPS. It contains a minimal subset
of instructions from CHERI-RISC-V [Watson et al., 2020],
including branching, jumping and arithmetic instructions. A
word on the machine is either an integer or a capability and
these can be stored in memory and general-purpose registers
(GPRs). MINIMALCAPS supports memory and object capa-
bilities, a superset of what is supported in Cerise [Georges
et al., 2021a,b, Van Strydonck et al., 2021].

2.2 RISC-V PMP
The RISC-V Privileged Architecture Specification provides
the optional Physical Memory Protection (PMP) extension
to restrict access to physical address regions [RISC-V Inter-
national, 2022]. RISC-V defines three privilege levels: User,
Supervisor and Machine, of which only the Machine level is
mandatory for a RISC-V implementation. PMP allows config-
uring a memory access policy on 16 or 64 contiguous regions
of memory by setting special registers, which are only ac-
cessible from the most privileged protection level (machine
mode). PMP has been used to implement a trusted execution
environment called Keystone [Lee et al., 2020].

We illustrate RISC-V PMP policy configuration in Figure 2,
where we limit ourselves to four PMP entries. PMP memory
regions are specified by a single address register, which is in-
terpreted according to one of several address-matching modes,
but for the purpose of presentation, we restrict ourselves to
Top of Range (TOR). In TOR mode, the address register of
a PMP entry forms the top of the range and the preceding
address register (or 0 in case of entry 0) forms the bottom of
the range. In other words, for PMP entry i, the range of the
entry is defined as [pmpaddri−1,pmpaddri), with pmpaddr−1
equal to 0.

In addition to the address, a second special register specifies

Figure 2: An example RISC-V PMP policy in Top-of-Range
mode (TOR).
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a configuration for every PMP entry. For our purposes we
present the configuration as 4 bits of the form LRWX , where
L defines whether the PMP entry is locked and RWX stands
for Read, Write and Execute respectively. We explain PMP
using the scenario shown in Figure 2, where we see that we
grant read-only access to User and Supervisor mode (U- and
S-mode) in PMP entry 1 and read-write access in PMP entry 3.
PMP entry 2 contains a configuration where the lock bit is set,
indicating that the read-only permission of this entry applies
not only to U-mode and S-mode, but to M-mode (machine
mode) as well. PMP entry 0 grants no permissions and is not
locked, so only M-mode can access this range of memory.

We now give a broader explanation of the policy enforced
by PMP entries. Non-locked PMP entries grant permissions
to U-mode and S-mode. By default, M-mode has full per-
missions over memory while U-mode and S-mode have no
permissions. A locked PMP entry revokes permissions in
all modes, thus applying to M-mode. Such a PMP entry can
only be reset by resetting the system itself, i.e., one cannot
write to the associated configuration and address register (and
in the case of TOR addressing mode, the preceding address
register).

The PMP check algorithm statically prioritizes the lowest-
numbered PMP entries. For a PMP entry to match an ad-
dress, all bytes (in the case of multi-byte memory accesses)
must match the PMP entry address range. When a PMP entry
matches an address, the L, R, W, and X bits will determine
whether the access succeeds or fails, and if no PMP entry
matches an address, the access will succeed in M-mode but
fail in other modes.

In our case study we focus on RV32I, the 32-bit base integer
instruction set, with the PMP extension. The case itself is a
manual translation from the SAIL code to µSAIL, with some
additional simplifications: we assume unbounded integers,
only two (rather than 16 or 64) PMP configuration entries in
top-of-range (TOR) mode are supported, there is no virtual
memory, and we only support M-mode and U-mode.

3 Universal Contracts for SAIL ISA semantics

Although the general approach has not been previously de-
scribed in the literature, universal contracts have been used be-
fore to formalize security guarantees for high-level languages
[Devriese et al., 2016, Swasey et al., 2017, Van Strydonck
et al., 2019] as well as assembly languages [Georges et al.,
2021b, Skorstengaard et al., 2018, Van Strydonck et al., 2021].
Essentially, the idea is to formulate the security guarantees
offered by a programming language or ISA in the form of a
contract that holds for arbitrary, potentially untrusted, code,
i.e., a universal contract. The contract expresses the restric-
tions enforced by the language on untrusted programs and
needs to be proven to hold under the language’s operational
semantics.

Universal contracts are formalized using separation logic,

an extension of Hoare logic that enables reasoning about
programs that use shared mutable data structures, such as
the heap [Reynolds, 2002]. Furthermore, separation logic
can be used for sequential and for concurrent programs. The
universal contract is a Hoare triple over an arbitrary piece of
code, where the precondition and postcondition describe the
conditions that need to be met and the guarantees given when
executing the code. We will make this more concrete in the
case studies discussed in Section 5 and Section 6.

While universal contracts apply to arbitrary assembly code,
they take a slightly different form in our setting. When using
SAIL, an ISA semantics is defined through a definitional inter-
preter for the ISA’s assembly language, with a main function
that implements the fetch-decode-execute cycle of the ISA.
The arbitrary programs that our contract applies to therefore
take the form of arbitrary instructions encoded in memory.
Our universal contract is thus defined as a Hoare triple over
the Fetch-Decode-Execute cycle. In the remainder of this pa-
per, we will use the function name fdeCycle to refer to the
SAIL function implementing this cycle, even though it may
be named differently in a particular SAIL spec.

The goals of our approach are to enable reasoning about
the ISA and programs written in it, as well as preserving
freedom of implementation. In other words, we want to define
universal contracts for the security guarantees offered by an
ISA but leave them sufficiently abstract so that they remain
valid under ISA modifications.

Although we verify universal contracts against an ISA’s
operational semantics, that does not mean it should be con-
sidered as derivative or subjugate. Rather, the UC should be
regarded as a security specification, supplementing the func-
tional specification of the ISA. This security specification
is part of the ISA contract and precludes future and current
ISA implementations and extensions from adding instruc-
tions or other behavior that violate the ISA guarantees, while
otherwise preserving their implementation freedom.

We conjecture that the universal contracts defined in the
case studies presented later in this paper are sufficiently ab-
stract to allow a range of extensions. For instance, in the case
of RISC-V, for which we currently define a contract over the
base instruction set and the PMP extension, the universal con-
tract should hold for more optional features of the ISA and
extensions (for example adding a floating point unit, user-
level interrupts etc.) without requiring major changes to the
universal contract. Of course, not all modifications or exten-
sions will be supported by the same universal contract. New
semantic features, for example virtual memory, will require
modifying the universal contract accordingly.

Ideally, the effort to re-verify a universal contract for a
modified ISA with a program verifier is kept minimal. It is
commonly understood that a high degree of proof automation
leads to proofs that are robust to changes [Chlipala, 2013,
Pierce et al., 2018]. Therefore, for small modifications or
modifications that are orthogonal to security-related matters,
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we should expect that a semi-automatic verifier, as we present
in Section 4, can re-verify proofs with no or only a minimal
amount of intervention.

4 Katamaran

Verifying that the semantics upholds security properties is a
significant endeavor which involves manual reasoning. For
instance, the COQ formalization of Georges et al. [2021a]’s
capability safety proof for a simple capability machine with
19 instructions requires about 7kLOC. Real-world ISAs can of
course be much larger. Consequently, scaling up verification
of ISA properties raises important proof engineering chal-
lenges. Furthermore, if the ISA changes (because of minor
updates, new features or for experimentation), the proofs have
to be updated as well. For manual proofs, this can result in a
prohibitive amount of work.

In a nutshell, proof automation is mission-critical for the
verification effort to scale in terms of the size and complexity
of the specification of the instruction sets and of the speci-
fication of the security guarantee itself, and for proofs to be
robust to changes in the specification.

Proof automation means that uninteresting or repetitive
parts of the proof are dealt with automatically using a tool,
library, script etc. The goal is for a human to steer the automa-
tion by providing heuristics, and she should also be able to
intervene directly and prove certain cases manually where full
automation fails. In other words, verifying security properties
of ISAs should at least be semi-automatic.

To this end, we have developed KATAMARAN, a new semi-
automatic separation logic verifier, implemented and proven
sound using Kripke specification monads [Keuchel et al.,
2022]. KATAMARAN is developed as a library for the COQ
proof assistant, and works with µSAIL, a new core calculus for
SAIL, deeply embedded in COQ, offering many of SAIL’s fea-
tures.2 For the time being, the translation from SAIL to µSAIL
has to be performed manually, but we intend to automate it in
the future.

Much like SAIL, µSAIL specifications also leave the defini-
tion of memory out of the functional specification and require
a (user-provided) runtime system to define what constitutes
the machine’s memory and to provide access to it. To this
end, KATAMARAN relies on foreign functions – that is, func-
tions implemented in COQ of which the signature has been
declared in µSAIL so they are callable. Additionally, µSAIL
allows invoking lemmas (sometimes referred to as ghost state-
ments), which instructs the verifier to take a non-trivial proof
step that is verified separately.

The security properties are specified by means of separation
logic-based contracts consisting of pre- and postconditions for
all functions, including foreign ones. For this, KATAMARAN
contains its own deeply embedded assertion language.

2SAIL’s existing COQ backend only translates to a shallow embedding.

Verifying that functions adhere to their contracts is done
via preconditioned forward symbolic execution [Baldoni et al.,
2018, Berdine et al., 2005] of the function bodies. During the
execution, KATAMARAN tries to discharge proof obligations
automatically and leaves residual verification conditions for
the user where this fails. To bound the burden, we require that
all spatial proof obligations – that is, those related to registers
and memory, are dealt with during symbolic execution, poten-
tially with the help of the user in terms of ghost statements
and heuristics, and thus only pure proof obligations remain.
Hence, the produced residual verification conditions will be
in first-order predicate logic, which the user can discharge
using COQ’s built-in proof automation.

A question that arises is whether the generated verification
conditions suffice to verify the function contracts. The user
does not have to take the output of the symbolic executor at
face value: KATAMARAN comes with a full soundness proof
against the µSAIL operational semantics. The structure is
depicted in Figure 3. The contracts of both kinds of functions
and the code of the µSAIL functions are inputs to the symbolic
executor from which it produces verification conditions. A
first soundness proof connects this to an axiomatic program
logic: given a proof of the verification conditions, the function
bodies are also verifiable in the program logic.

The program logic consists of separation logic-based Hoare
triples. We assign meaning to these triples using the IRIS
separation logic framework [Jung et al., 2018] and verify
that the triples hold. This requires user-provided proofs that
foreign functions adhere to their contracts and that lemmas
used in ghost statements are sound. We kept the axiomatic
program logic separate from its instantiation using Iris, and
in principle, other logics than Iris can be used. However,
we provide the Iris model as the default choice with full
soundness proofs and hooks for the user to extend it.

A last adequacy proof connects the Iris triples to the op-
erational semantics: every triple that holds semantically is
partially correct. For our purposes, partial correctness is suf-
ficient; we assume it is verified separately that the machine
cannot get stuck.

Figure 3: Structure of KATAMARAN
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V (z) = True (z ∈ Z)
V (O, –, –, –) = True
V (R, b, e, –) = ∗

a∈[b,e]
∃w,a 7→ w∗V (w)

V (RW, b, e, –) = ∗
a∈[b,e]

∃w,a 7→ w∗V (w)

V (E, b, e, a) = ▷�E(R,b,e,a)

E(w) =


(

pc ↪→ w∗ ∗
r∈GPR

(∃w.r 7→ w∗V (w))

)
−∗

wp fdeCycle() {⊤}

Figure 4: Logical relations for capability safety

5 Capability Safety for MINIMALCAPS

In this section we present the universal contract for and the ver-
ification of our first case, MINIMALCAPS, a subset of CHERI-
RISC-V. Capability safety expresses bounds on the authority
of arbitrary untrusted code. We prove the capability safety
property by defining a contract over the fdeCycle, following
Devriese et al. [2016], OCPL [Swasey et al., 2017] and Cerise
[Georges et al., 2021a,b, Van Strydonck et al., 2021]. The
contract states that if we start from a configuration of safe
values, arbitrary code will not be able to increase the authority
expressed by those safe values.

Figure 4 shows the logical relation V which defines the
authority of words (i.e., integers and capabilities). The logical
relation is defined using separation logic [Reynolds, 2002],
where ∗ is separating conjunction (unfamiliar readers can
interpret it as classical conjunction) and 7→ the points-to pred-
icate. Points-to assertions a 7→ w and r 7→ w represent own-
ership of the memory location at address a or the register r
(respectively) and knowledge of its current contents w. The
notation ∗

a∈[b,e]
P indicates that P holds separately for all ad-

dresses a ∈ [b,e].
Authority of a value or capability is defined as separation

logic predicates that must hold for safely passing the value
or capability to untrusted code. Memory capabilities are thus
safe when the addressable locations a are owned by an invari-
ant. This invariant must require exactly that the word stored
at address a always remains safe. For simplicity, the defini-
tion treats read-only capabilities as read-write. Note that the
definition assumes a form of shared invariants, as available
in IRIS, indicated by a box. The authority represented by an
enter capability is software-defined and therefore non-trivial
to define. Our definition follows previous work and requires
that jumping to the capability with its permission changed to
R and the general-purpose registers (GPRs) filled with safe
words, will execute correctly and will not break any invariants
– that is, wp fdeCycle() {⊤}.

First-time readers may ignore Iris’s always modality (�),

which requires that the authority does not depend on exclusive
ownership of resources, and Iris’s later modality (▷), which
is used to justify the cycle in the definition of V . We refer to
prior work for more explanation [e.g., Georges et al., 2021b].

5.1 Universal Contract

The universal contract for MINIMALCAPS is a contract for the
fetch-decode-execute cycle, depicted in Figure 5. We define
contracts as Hoare triples, {P} someCode() {r.Q}, where
P is the precondition and if someCode() terminates then Q
will hold with variable r (the identifier before the ".") bound
to the result value. If Q does not mention r, then we omit r
and simply write {Q}. The UC asserts that if the machine
is executed (i.e., the fdeCycle() is invoked) with authoritized
capabilities in pc and general-purpose registers, then it will
execute correctly and not break any invariants. The postcon-
dition True (⊤) is trivial but not very relevant, because the
machine will usually continue running indefinitely. It is the
contract’s implicit guarantees about preservation of invariants
that are more interesting for us.

As has been demonstrated previously [Georges et al.,
2021a,b, Van Strydonck et al., 2021], such a UC is agnos-
tic of software abstractions but supports reasoning about un-
trusted code. Essentially, one can register integrity properties
of trusted code as invariants (note that Iris invariants can also
express protocols on private state [Jung et al., 2018]), and
then use the UC for justifying jumps to untrusted code. Ap-
plying the UC requires proving that authority is available
for all words that the untrusted code gets access to, directly
(in a register) or indirectly (in memory reachable from regis-
ter capabilities). This includes proving that enter capabilities
passed to the adversary can be invoked freely but will never
break established invariants.

5.2 Verification

The verification of capability safety in the literature so far
has required significant manual effort [Georges et al., 2021b,
Skorstengaard et al., 2018, Van Strydonck et al., 2021]. In this
section, we demonstrate our semi-automatic approach.

The contract for fdeCycle() iterates the following contract
for fdeStep(), a helper function in the semantics which exe-

{
(∃c.(pc 7→ c)∗V (c))∗
∗r∈GPR (∃w.r 7→ w∗V (w))

}
fdeCycle()

{
⊤
}

Figure 5: Universal Contract for Capability Safety for MINI-
MALCAPS.
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cutes a single FDE cycle.{
(∃c.(pc 7→ c)∗V (c))∗∗r∈GPR (∃w.r 7→ w∗V (w))∗ IH

}
fdeStep(){

(∃c.(pc 7→ c)∗V (c)∨E(c))∗∗r∈GPR (∃w.r 7→ w∗V (w))
}

This internal contract requires an induction hypothesis IH:

IH :=�▷(∀c. pc 7→ c∗V (c)∗

∗
r∈GPR

(∃w.r 7→ w∗V (w))−∗ wp fdeCycle() {⊤})

Note how the postcondition allows the pc to contain a safe
capability or one that satisfies the expression relation E above.
The latter is necessary because after invoking an enter capa-
bility, the pc may contain a value that would not be safe to
hand to an adversary but is nevertheless safe to execute. We
apply the same contract to helper functions used by fdeStep()
to execute individual instructions. For other helper functions,
the contracts are more specific to what each function does.

Consider, for example, the read_mem(c) function, which
reads the word in memory denoted by the cursor of the given
capability. The contract of read_mem requires authority for
capability (p,b,e,a) before executing read_mem(c) with per-
mission p including at least the read permission, and guar-
antees that the capability is still safe afterwards, and that
authority for the word read from memory is also available:{

V ((p,b,e,a))∗R≤p p
}

read_mem((p,b,e,a)){
w.V (w)∗V ((p,b,e,a))

}
To give you an idea of how these contracts are verified us-

ing KATAMARAN, Figure 6 shows the µSAIL implementation
of MINIMALCAPS’ store instruction, with verification annota-
tions in red (not part of the code itself), and Figure 7 displays
the contracts for the functions used in the implementation.
This instruction takes 3 arguments. The first two arguments,
rs (source contents to write to memory) and rb (base capa-
bility for computing the target memory address to write to),
are GPRs and thus their possible values are limited to the
available GPRs of the ISA. The third argument is an integer
immediate, which is added to the cursor of the base capability
(i.e., the contents of rs will be written to cursor+ immediate,
where the cursor is part of the capability in rb). The returned
boolean indicates to the fetch-decode-execute loop that the
machine should continue executing.

In the function body, a new capability c is derived from bc
with the immediate added to the cursor, and this capability is
used to perform the write to memory of the word w in rs. We
use a few lemmas to modify the precondition in order to sat-
isfy the precondition of write_mem, which requires authority
for the destination capability and for the word being written
to memory. For simplicity we assume that rb = R0,rs = R1

{(∃c. pc 7→ c∗V (c)) ∗
r∈GPR

(∃w.r 7→ w∗V (w))}

store(rs : GPR,rb : GPR, immediate : int) : bool :=
let bc := call read_reg_cap rb in
let (perm, beg, end, cursor) := bc in
let c := (perm, beg, end, cursor+ immediate) in
let p := call write_allowed perm in
assert p;
let w := call read_reg rs in
lemma subperm_not_E RW perm;{

r0 7→ bc∗V (bc)∗ r1 7→ w1 ∗V (w1)∗perm ̸= E . . .
}

lemma move_cursor bc c;{
r0 7→ bc∗V (bc)∗ r1 7→ w1 ∗V (w1)∗perm ̸= E∗V (c)∗ . . .

}
call write_mem c w;
call update_pc;
true

{(∃c. pc 7→ c∗V (c))∗ ∗
r∈GPR

(∃w.r 7→ w∗V (w))}

Figure 6: Capability safety for the store instruction.

and ignore the non-relevant parts of the precondition for this
discussion.

The move_cursor lemma will generate a V predicate based
on the bc capability for a capability that differs only in the
cursor field (the second argument). Remember that the author-
ity of memory capabilities requires that all addresses between
[begin,end] are owned and point to words whose authority is
available, i.e., it does not mention the cursor of the capability.
Because move_cursor only works for non-E capabilities, we
use another lemma subperm_not_E to derive that perm ̸= E
from RW≤p perm.

The write_mem function takes two arguments, a capability
and a word to be written to memory. write_mem will check
that the cursor of the capability is within bounds but assumes
it has the write permission. If all checks pass, the given word
will be written to the address in memory denoted by the
cursor of the capability argument. The checks are critical to
the capability safety property of the MINIMALCAPS machine
and the machine will go into a failed state for attempting an
illegal write operation if the checks are not satisfied.

The actual write to memory is performed through a foreign
function, called wM, which takes an address and a word to
be written to memory. wM is provided by the SAIL standard
library for the SAIL specification and in the runtime system
for its µSAIL counterpart. The update_pc function is quite
simple and, as one might expect, utilizes the move_cursor
lemma to generate a V predicate for the updated pc.
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Arriving at the end of exec_sd function, we can verify that
its contract holds, i.e., safety of register values is preserved
when executing this instruction. Together with the verification
of other functions, we derive the contract for the fetch-decode-
execute cycle. That contract is a universal contract of the ISA,
as it expresses an authority boundary on (untrusted) code. It
allows us to conclude that our MINIMALCAPS ISA actually
satisfies the intended capability safety property.

6 Memory Integrity for RISC-V PMP

In addition to MINIMALCAPS, which is an artificial ISA de-
fined by us, we demonstrate the generality of universal con-
tracts and Katamaran by applying them to RISC-V with sup-
port for exceptions (synchronous interrupts) and the PMP
extension, as explained in Section 2. The universal contract
will capture the memory integrity guarantee offered by the
ISA when invoking untrusted code.

Our model of RISC-V is translated to µSAIL from the
ISA’s canonical SAIL semantics with a number of simpli-
fications and assumptions: we assume unbounded integers,
only two (rather than 16 or 64) PMP configuration entries in
top-of-range (TOR) mode are supported, there is no virtual
memory, and we only support M-mode and U-mode. A WIP
version of the model with bounded integers is included in the
supplementary material. It includes working versions of the
Katamaran-automated proofs, but does not yet have a working
Iris model.

We define the universal contract for this machine, over the
fetch-decode-execute cycle as shown in Figure 8. In this con-
tract the machine starts from a Normal state, which requires
ownership (and knowledge of the current values) of the archi-
tectural registers pc, cur_privilege, mtvec, mcause, mstatus
and mepc, containing respectively the program counter, cur-
rent privilege level, configured exception handler address,
cause of the last interrupt, and the privilege level and pro-

{
V (c)

}
read_mem c

{
v.V (v)∗V (c)

}
{r 7→ w}read_reg r {v.v = w∗ r 7→ w}
{r 7→ w}read_reg_cap r {c.c = w∗ r 7→ w}{

V (c)∗V (w)
}

write_mem c v
{

V (c)
}{

pc 7→ c∗V (c)
}

update_pc
{
∃c.pc 7→ c∗V (c)

}{
V (p,b,e,a)∗ p ̸= E

}
move_cursor (p,b,e,a) (p,b,e,a′)←↩{

V (p,b,e,a)∗V (p,b,e,a′)
}{

(p = R∨ p = RW)

∗ p≤p p′

}
subperm_not_E p p′

{
p′ ̸= E

}
Figure 7: Contracts for functions and lemmas used in exec_sd
(r is used for registers, v and w for values and c for capabilities)


Normal(l,h,mpp,entries)
∗▷(CSR Modified(l,entries)−∗ wp fdeCycle() {⊤})
∗▷(Trap(l,h,entries)−∗ wp fdeCycle() {⊤})
∗▷(Recover(l,h,mpp,entries)−∗ wp fdeCycle() {⊤})


fdeCycle(){⊤}

Normal(m,h,mpp,entries) =

(∃i.pc 7→ i)∗cur_privilege 7→ l ∗mtvec 7→ h∗
(∃c.mcause 7→ c)∗mstatus 7→ [mpp]∗
mepc 7→ mepc∗PMP_entries entries∗

∗
r∈GPR

(∃w.r 7→ w)∗PMP_addr_access entries l

Trap(l,h,entries) =

pc 7→ h∗cur_privilege 7→Machine∗mtvec 7→ h∗
(∃c.mcause 7→ c)∗mstatus 7→ [l]∗
(∃c.mepc 7→ c)∗PMP_entries entries∗

∗
r∈GPR

(∃w.r 7→ w)∗PMP_addr_access entries l

Figure 8: Universal Contract for Memory Integrity for RISC-
V with PMP

gram counter before the last interrupt. Additionally, the state
requires ownership of the general-purpose registers and the
current PMP configuration entries. Finally and perhaps most
importantly, Normal requires ownership of PMP_addr_access
entries p, an asbtract predicate that represents ownership of
the part of memory that is accessible according to the PMP
policy entries (discussed further below).

Given this authority, the contract states that the ISA will
execute correctly, provided that three extra conditions are ful-
filled. All three require that the machine continues executing
correctly in a specific situation: (1) when CSRs are modified,
(2) when a trap occurs to the exception handler, and (3) when
an MRET is used to return to a lower privilege level (Re-
cover). The three conditions use the standard IRIS predicate
wp fdeCycle() {⊤} which represents the weakest precondi-
tion for fdeCycle() to execute correctly without breaking any
invariants. They also use the separating implication operator
−∗ (affectionately referred to as the magic wand) to require
that this weakest precondition holds when authority for the
respective premises is presented.

For brevity, we only show the definition of Trap, arguably
the most important case, as the other two cases can only be
reached if the original privilege level l was Machine, i.e., the
UC is used to reason about untrusted Machine code. PMP can
be used to encapsulate Machine code (by locking some PMP
entries) but it is more typically used for encapsulating lower-
privilege code. Trap requires ownership of the same ISA
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registers and memory as Normal above. However, it addition-
ally requires that the program counter is set to the configured
exception handler, that cur_privilege is set to Machine mode,
and that mstatus correctly stores l as the previous privilege
level. Under these conditions, the user of the UC needs to
prove that the machine will execute correctly. This reflects
the intuition that trusted code can rely on PMP to encapsulate
untrusted lower-privilege code, but only if it ensures security
of the configured exception handler.

A crucial predicate in the universal contract is
PMP_addr_access, which captures the semantics of
the PMP check algorithm and is shown in Figure 9. It is
defined as a separating conjunction over all addresses of the
machine. The predicate allows obtaining a pointsto predicate
for an address a, if the PMP policy specifies a permission p
(e.g. Read or Write)for it at privilege level l. Importantly,
this means that ownership of other memory locations is not
required for using the universal contract.

6.1 Verification
As for MINIMALCAPS, we verify that our universal contract
holds for the functional specification of RISC-V. This verifica-
tion is done assuming contracts for reading from and writing
to memory, shown in Figure 10. The contracts require read
or write access, respectively in the form of the PMP_access
predicate encountered above. We also require that we have
ownership of the address that we want to read from or write
to, a 7→ w. The postconditions of these functions return the
resources used, updated in the case of write_ram to point to
the newly written value.

Like for MINIMALCAPS, the proof of the universal contract
works by iterating a contract for the single-cycle fdeStep()
function. The contract is depicted in a bit more detail in Fig-
ure 11. It specifies that executing an instruction will leave
the CPU in one of the states Normal, CSRModified, Trap
or Recover which we already encountered in the UC, with
specific values for the ISA registers. Not shown are the
predicates for ownership over the general-purpose registers,
i.e.,∗r∈GPR (∃w.r 7→ w), and the PMP entries, PMP_entries,
and PMP_addr_access, representing ownership of the PMP-
authorized memory. All these predicates are preserved as-is
upon a state change, except PMP_entries which may be mod-
ified in the CSR Modified state. The CSRModified and Re-
cover states can only be reached when executing in Machine
mode, i.e., p = Machine. Trap transfers into Machine mode
and Recover returns to the privilege level stored in mpp.

To verify the memory integrity property for RISC-V
with PMP, we define some lemmas that aid in the semi-

PMP_addr_access entries m =

∗a∈addrs((∃p,PMP_access a entries m p)−∗ ∃w,a 7→ w)

Figure 9: PMP_addr_access predicate implementation


Read ⊑ t
∗cur_privilege 7→ p
∗PMP_entries entries
∗PMP_access a entries p t
∗a 7→ w

read_ram a

 cur_privilege 7→ p
∗PMP_entries entries
∗a 7→ w




Write⊑ t
∗cur_privilege 7→ p
∗PMP_entries entries
∗PMP_access a entries p t
∗∃w,a 7→ w

write_ram a v

 cur_privilege 7→ p
∗PMP_entries entries
∗a 7→ v



Figure 10: Contracts for functions interacting directly with
memory

automatic verification of the case. Figure 12 depicts some
interesting lemmas concerning the PMP extension. The
first lemma open_PMP_entries and a dual lemma called
close_PMP_entries, open resp. close the PMP_entries pred-
icate, to allow direct access to the PMP CSRs in parts of
the ISA semantics that access them, particularly the PMP
check algorithm. We use the same scheme for reasoning
about GPRs, i.e., we pack them in a predicate and open
and close it when appropriate. The two lemmas needed
for interacting with memory are extract_PMP_ptsto and
return_PMP_ptsto. extract_PMP_ptsto trades ownership of
PMP-authorized memory, given by PMP_addr_access for a
pointsto chunk for an authorized, in-range address a and a
magic wand that allows to recover PMP_addr_access using
return_PMP_ptsto if we return the pointsto chunk. All these
lemmas are proven correct in the IRIS model of our case
and are explicitly invoked in its function definitions using
ghost statements that aid the semi-automatic verification of
the contracts of these functions by KATAMARAN.

These lemma invocations suffice to let Katamaran verify
most of the contracts in the codebase. As for MinimalCaps,
we only need to prove the contract for fdeCycle() and its
lemmas manually, because it requires the use of IRIS’s later
modality and Löb induction, which Katamaran does not (yet)
support. The contract expresses PMP’s intuitive security guar-
antee and remains agnostic of software-defined abstractions.
Nevertheless, we will see in Section 7.2 that it can be used to
reason about specific security-critical code relying on PMP
security guarantees.

7 Evaluation

In this section we evaluate our semi-automatic approach to
universal contract verification. Our aims for our approach
are that universal contracts should be agnostic of software
abstractions and verified against the functional semantics of
ISAs. Furthermore, we want to minimize the effort to re-
verify a universal contract for a modified ISA. We evaluate
the proof effort required in our case study absolutely as well
as relatively to Cerise [Georges et al., 2021a,b, Van Strydonck
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Figure 11: Contract for taking a step on RISC-V (i.e., executing an instruction). New existentially quantified logic variables
are shown in red, modified registers are shown in bold. Constraints on the Start of Iteration logic variables are indicated on the
arrows (we require for CSR Modified and Recover state transitions that we started from a state running in Machine mode, i.e.,
p = Machine).

{PMP_entries entries} open_PMP_entries


∃cfg0, addr0, cfg1, addr1,
(pmp0cfg 7→ cfg0 ∗ pmpaddr0 7→ addr0 ∗
pmp1cfg 7→ cfg1 ∗ pmpaddr1 7→ addr1 ∗
entries = [(cfg0,addr0);(cfg1,addr1)])

{
PMP_addr_access entries p∗
0≤ addr ≤ maxAddr∗PMP_access addr entries p acc

}
extract_PMP_ptsto {∃w.addr 7→ w∗(addr 7→ w−∗ PMP_addr_access entries p)}

{∃w.addr 7→ w∗(addr 7→ w−∗ PMP_addr_access entries p)} return_PMP_ptsto {PMP_addr_access entries p}

Figure 12: Contracts for lemmas used in RISC-V PMP case study.

et al., 2021] in Section 7.1. In Section 7.2 we demonstrate
how the universal contract can be applied to verify programs
running on top of an ISA.

7.1 Proof effort

In Table 1 we present some insightful statistics on our capa-
bility safety case study and some relevant statistics for Cerise
[Georges et al., 2021a,b, Van Strydonck et al., 2021]. We will
first focus on the MINIMALCAPS and RISC-V PMP rows of
the table and discuss the comparison with Cerise at the end
of this section.

The first column in the table shows the SAIL LoC for the
MINIMALCAPS case study. For MINIMALCAPS we started
with our own SAIL specification and gradually extended it
until it became an actual subset of CHERI-RISC-V, making
it trivial to report the SAIL LoC for the MINIMALCAPS case
study. We took the opposite direction for the RISC-V PMP
case study, starting from the RISC-V SAIL specification and
simplifying it during the translation step from SAIL to µSAIL
into a minimal subset with the PMP extension. This means
we do not have a simplified, minimal RISC-V PMP SAIL
codebase and therefore do not report on the SAIL LoC for
this case study.

The following column gives the LoC for KATAMARAN, the
semi-automatic separation logic verifier used in our approach.
KATAMARAN is a reusable tool, both MINIMALCAPS and
RISC-V PMP are instantiated for use with KATAMARAN,

hence the constant LoC for both case studies. We view both
the SAIL LoC and KATAMARAN LoC separate from our case
studies and therefore they are not included in the totals at the
right of the table.

The next part of the table is data about our case studies
themselves. Our case studies are based on SAIL codebases,
which we currently manually translate into µSAIL code, but
we are confident that this translation can be automated. The
µSAIL code is twice the size of the SAIL code, this due to
some configuration that we need to provide for KATAMARAN
and the required derivation of typeclass instances. Next, we
present the number of µSAIL functions, foreign functions,
lemmas, and lemma invocations. The lemmas aid KATAMA-
RAN in its verification endeavor and the invocations of these
lemmas need to be manually added in the µSAIL functions.
The contract proof LoC for the µSAIL specification of our
case study are indicative of how well KATAMARAN was able
to automate the boring parts. For the MINIMALCAPS case
study, the majority of the 122 LoC for the µSAIL specifica-
tion proofs consists of tactic invocations to discharge trivial
proof obligations. This is similar for the RISC-V PMP case
study, but KATAMARAN left a few residual verification con-
ditions that required manual discharging. The proofs for the
foreign functions and lemmas — the interesting part of our
case studies — that reason about capability safety and mem-
ory interactions, require manual proof effort. KATAMARAN
distinguishes between spatial and pure abstract predicates and
provides hooks for a user-defined solver for pure predicates.
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MINIMALCAPS 547 - 13k 1117 53 3 12 40 407 49 142 122 194 94 342 3 106 183 2867 1750
RISC-V PMP - - 13k 1636 60 3 8 16 851 49 129 212 127 150 144 9 214 272 3880 2244
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Table 1: Detailed statistics for the MINIMALCAPS and RISC-V PMP case studies and some comparative statistics (where
relevant) with Cerise (the base version without uninitialized, local capabilities or I/O [Georges et al., 2021a]), giving the lines of
code (LoC) without comments for different parts of the case study as well as some numbers on how many µSAIL functions,
foreign functions, lemmas, lemma invocations and pure predicates each case study defined. There is no direct mapping of our
approach with the approach taken for Cerise so the comparison is not entirely fair, for example, the IRIS model LoC for Cerise
also contains code for verifying concrete code. We view both the SAIL LoC and KATAMARAN LoC separate from our case
studies and therefore they are not included in the totals at the right of the table.

We specified a few pure predicates and report on the LoC for
the user solver. Finally, we were able to validate our universal
contracts in 183 LoC (i.e., reasoning about the contract for
the fdeCycle) for MINIMALCAPS and 272 LoC for RISC-V
PMP.

We end Table 1 with the total LoC for the case studies,
once including the µSAIL specification (or operational seman-
tics for Cerise) and once without, as the µSAIL specification
should in principle be generatable.

To further demonstrate the robustness of our approach to
universal contracts, we have added an instruction to each case
study that doesn’t introduce any complexity regarding the
proven universal contract, i.e., we are adding a boring case
to each case study. We have chosen to duplicate the integer
addition instruction for this purpose, which takes three regis-
ters, a destination register to write the result to and two source
registers. In RISC-V this means adding a new operation for
the RTYPE instructions, while for MINIMALCAPS we define
a completely new instruction. The increase in the µSAIL LoC
specification is only two lines for the RISC-V case and 17
for MINIMALCAPS. No further changes are required for the
RISC-V case, i.e., we do not need to modify any proofs. For
MINIMALCAPS we need to add a lemma invocation in the
execute clause for the instruction and we need to specify a
contract for the new instruction execution clause, which needs
3 LoC for the contract specification. Furthermore, we add two
lines of contract proof code to include this new instruction.
Due to the added lemma invocations, KATAMARAN was able
to verify the proof without further manual effort. We con-
clude that adding a boring instruction (i.e., an instruction
that is not relevant for the universal contract) requires only
minimal changes to both of our case studies.

The categories for which we provide statistics for MINI-

MALCAPS have no direct mapping for Cerise, so we tried to
gather information to the best of our knowledge for a mean-
ingful discussion, but the reader should keep in mind that this
comparison is not entirely fair. For example, the IRIS LoC
for Cerise does not separate lemmas and proofs that are in-
tended for verifying concrete code from those that are used
to prove the universal contract. The operational semantics
for the capability machine of Cerise is comparable with our
µSAIL specification. More interesting is the statistics for lem-
mas and the lines of code for the specification and proofs
of these lemmas, where Cerise requires significantly more
proof effort. For MINIMALCAPS, we use KATAMARAN to
automate the boring stuff, leaving us with a smaller amount
of proof code needed for the lemmas that are important for
the capability safety property. The IRIS model is already par-
tially instantiated in the KATAMARAN codebase, making the
MINIMALCAPS LoC for this part smaller than that of Cerise.

7.2 Applying the universal contract: femtoker-
nel verification

Thus far, we have focused on the verification of the secu-
rity guarantees of our universal contracts. In this section, we
demonstrate that the universal contract can also be applied for
the verification of properties of programs running on top of
an ISA. The MINIMALCAPS UC is close to the Cerise model,
for which this has already been demonstrated [Georges et al.,
2021a, Van Strydonck et al., 2021]. Therefore, we focus on
our RISC-V case, where, to the best of our knowledge, such a
verification using universal contracts has not yet been demon-
strated.

To illustrate this technique, consider the minimal femtok-
ernel in Figure 13, which configures the PMP extension to
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1: kernel: la ra, adv
2: csrrw pmpaddr0, ra, t0
3: lui ra, max
4: csrrw x0, pmpaddr1, ra
5: lui ra, 0x0
6: csrrw x0, pmp0cfg, ra
7: lui ra, 0xf
8: csrrw x0, pmp1cfg, ra
9: la ra, ih

10: csrrw x0, mtvec, ra
11: la ra, adv
12: csrrw x0, mepc, ra
13: lui ra, 0x0
14: csrrw x0, mstatus, ra
15: mret
16:
17: ih: auipc ra, 0
18: lw ra,12(ra)
19: mret
20: data: 42
21: adv: . . .

Figure 13: The femtokernel sets up the PMP entries to protect
itself, the interrupt handler and its internal state.

protect itself, including its interrupt handler (ih) and a private
data field (data), from adversarial user mode code (adv). More
specifically, the femtokernel configures the PMP address reg-
isters to create the memory regions [0,adv) and [adv,max)
(lines 1–4), where the max variable refers to the maximum
size of memory available on the machine, then revokes all
permissions for user mode for the first region (lines 5–6), and
grants read, write and execute permissions to user mode for
the second region (lines 7–8). Both entries are unlocked so
that machine mode code can also access the first region. The
kernel then installs its handler (lines 9–10) and jumps to the
adversary in user mode (lines 11–15) by loading the address
of the adversary into the mepc register (lines 11–12), clearing
the mstatus register (lines 13–14), i.e. setting the MPP field
to user mode, and performing the jump (line 15). The han-
dler will read the private data field into the ra register before
returning, but leaves the value in memory unchanged.

The integrity property we wish to verify is that the pri-
vate data field, which is initialized with value 42, will always
contain the value 42 — that is, code running in user mode
cannot modify (or even directly read) the internal state of
the kernel. We use the universal contract to reason about the
unknown code in user mode, and known code verification for
the initialization and handler code in machine mode.

The contracts for the kernel and interrupt handler are sim-
ilar, where the integrity property is the essential part. The
contracts also require ownership over the GPRs and CSRs,
and restricts the PMP entries related CSRs to also remain
invariant during execution afer initialization.

Inspired by Islaris [Sammler et al., 2022], we reused ex-
isting components and proofs of KATAMARAN to derive a
sound verifier for known assembly code and were thus able
to verify the contracts for the basic blocks of the femtokernel,
i.e., the initialization and handler code.

Taken together, our femtokernel case study demonstrates
that our UC for RISC-V can be directly applied for verifying
security properties of trusted code relying on PMP to interact
with untrusted code. All parts of the verification are fully ver-
ified in COQ, yielding a rigorous proof about ISA execution,
directly in terms of µSAIL’s operational semantics.

8 Related Work

Universal contracts for security were, to the best of our knowl-
edge, first used by Devriese et al. [2016], where they used a
reasoning approach based on logical relations in a high-level
language, with the fundamental theorem constituting a uni-
versal contract. Swasey et al. [2017] used a similar logical
relation and universal contract in a logic for Object Capability
Patterns (OCP) that enabled them to compositionally specify
and verify properties of OCPs in a high-level language. Sko-
rstengaard et al. [2018] use universal contracts to reason about
local capabilities in a simple capability machine assembly lan-
guage, capabilities that temporarily relinquish authority, and
a novel calling convention based on them. Similar universal
contracts have been formalized and proven for expressing ca-
pability safety of simple capability machine ISAs by Georges
et al. [2021b], Skorstengaard et al. [2018], Van Strydonck et al.
[2019, 2021]. They have taken a verification approach that
required significant effort to prove that the universal contracts
hold, in contrast to our semi-automatic verification approach
enabled by KATAMARAN.

Nienhuis et al. [2020] prove the reachable capability mono-
tonicy (i.e., the authority of available capabilities cannot be
increased during normal execution) and intra-domain memory
invariant properties for the entire CHERI-MIPS ISA, based on
the L3 specification instead of the SAIL specification, where
their security property is based on the ISA specification and
does not take a hardware implementation or software run-
ning on the ISA into account. There are some differences
between their work and ours: first, we have demonstrated that
the security property we formulate as a universal contract
can be used in the verification of programs to be executed
on the ISA. Second, the approach taken differs from ours in
that they automate the boring parts of the proof away with
automation using tactics and auto-generated proof scripts,
whereas we provide our semi-automatic logic verifier, KATA-
MARAN, based on symbolic execution. We also argue that
a more abstract description of the security property is more
appropriate to be future proof against ISA modifications and
extensions, and one example where this is beneficial is for
registers. In our universal contracts it doesn’t matter whether
a capability machine has a merged or split register file for
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capability registers, whereas Nienhuis et al. mention that such
a change required refactoring of the properties and proofs in
their approach. Finally, we demonstrate the generality of our
universal contracts approach by verifying security properties
of non-capability machines.

Similar work to that of Nienhuis et al. is done by Bauereiss
et al. [2022] on a full-scale industry architecture, Morello,
implementing the CHERI extension. To reason about the
ISA, a translation from the Arm ASL specification to SAIL
occurs first, and from the SAIL specification it is possible
to generate code for proof assistants such as Isabelle and
COQ. To verify the security properties, the authors define
four properties of arbitrary CHERI instruction execution and
use that to verify a concrete implementation (i.e., Morello).
As mentioned by Bauereiss et al., a limitation for proving
stronger properties, such as capability safety, require proof
techniques that currently do not scale up to full-scale industry
architectures. This is the issue that we are addressing with our
proposed universal contract methodology and KATAMARAN
to semi-automatically verify universal contracts. Gao and
Melham [2021] formally verify the correct execution of the
CHERI-instructions and liveness properties for the CHERI-
RISC-V ISA. In this work, the authors focus on capabilities
and thus leave the RISC-V instructions out of scope. Their
approach focuses on a concrete implementation of the ISA,
CHERI-Flute [2022], and they manually translate the SAIL
specification to SystemVerilog Assertions for the correctness
of CHERI-Flute. The focus of their work, however, differs
from ours as we focus on properties that are abstract enough
to not be tied to a specific ISA implementation.

Guarnieri et al. [2021] propose hardware/software contracts
to formalize security guarantees in a minimal ISA setting that
takes side-channel attacks into account. A similar approach
is taken by Ge et al. [2018], who propose the augmented
ISA (aISA) as a contract between the hardware and software,
adding guarantees about side-channel leakage to the ISA.
Both of these proposals address a different problem than we
do: while we leave confidentiality guarantees, microarchi-
tectural aspects and side-channel leakage out of scope, they
do the same with security boundaries, architectural security
primitives and direct-channel protections. In that sense, they
are formalizing a different aspect of ISA security guarantees,
which should ultimately be combined with direct-channel
guarantees like ours to obtain a complete ISA security speci-
fication. In our first results that we present in this paper we
consider confidentiality guarantees and side-channel attacks
out-of-scope but we intend to further explore this in future
work and leave the challenge of how to reason about these
on the ISA specification as an open problem for the universal
contracts approach.

A functional correctness proof of RISC-V PMP for the
Rocket Chip implementation was done by Cheang et al.
[2020], as a first effort towards verifying the Keystone [Lee
et al., 2020] framework. Their verification effort targets the

Rocket Chip generated hardware implementation of the RISC-
V ISA and is verified using Uclid5.

9 Conclusion

In this work, we have presented universal contracts: a method
for capturing security guarantees of ISAs w.r.t. the opera-
tional semantics of the specification language. The universal
contracts are defined over the Fetch-Decode-Execute cycle,
resulting in a contract that holds for arbitrary programs run-
ning on top of the ISA. We applied this approach to prove
security guarantees offered by our two case studies, (1) a
minimalistic capability machine for which we have proven
that capability safety holds and (2) the RISC-V base integer
instruction set with the PMP extension offering memory in-
tegrity protection. The verification of our universal contracts
happens semi-automatically with KATAMARAN, a tool we
have developed for this. Using KATAMARAN we were able to
automate the boring parts of the verification away and focus
on the interesting cases such as interaction with memory. To
achieve this, we define spatial lemmas, verified using the IRIS
Proof Mode, that we invoke in the µSAIL functions to guide
KATAMARAN in its verification effort.

We conclude this paper with a small discussion of some
future work. While our work demonstrates the viability of the
universal contracts approach, so far we have only instantiated
it for cut-down ISAs. A challenge for the universal contracts
approach is to apply it to realistic ISAs and take complex se-
mantic features (such as asynchronous interrupts, concurrency
etc) and other security properties (e.g. confidentiality) into
account. To mitigate that limitation we intend to automate
the translation from SAIL to µSAIL, improve KATAMARAN
automation and combine it with program logics that support
complex semantic features and security properties. Never-
theless, our current results already demonstrate the viability
and promise of the general approach to verify ISA security
properties using universal contracts and KATAMARAN.

Availability

The artifact containing the Coq development for this paper can
be found at https://doi.org/10.5281/zenodo.7188102

References

CTSRD-CHERI/Flute: RISC-V CPU, simple 5-stage in-order
pipeline, for low-end applications needing MMUs and
some performance., 2022. URL https://github.com/
CTSRD-CHERI/Flute.

Alasdair Armstrong, Thomas Bauereiss, Brian Campbell,
Alastair Reid, Kathryn E. Gray, Robert M. Norton,

13

https://doi.org/10.5281/zenodo.7188102
https://github.com/CTSRD-CHERI/Flute
https://github.com/CTSRD-CHERI/Flute


Prashanth Mundkur, Mark Wassell, Jon French, Christo-
pher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and
Peter Sewell. Isa semantics for armv8-a, risc-v, and cheri-
mips. Proc. ACM Program. Lang., 3(POPL), January 2019.
doi: 10.1145/3290384.
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