
Short Paper: A Modal Framework for
Security Properties

Matvey Soloviev Musard Balliu

KTH Royal Institute of Technology
{matvey,musard,robertog}@kth.se

Roberto Guanciale

I. INTRODUCTION

The study of computer security is concerned with guar-
anteeing that computer systems maintain some desirable
properties in the face of one or more attackers that
seek to subvert them by way of some set of actions
and observations available to each of them. To formalise
and streamline this process, various particular security
properties, ranging from basic ones such as confidentiality
and integrity [4] to more involved ones such as robust
declassification [7] and nonmalleability [2], have been
defined and studied. These properties can be instantiated
as building blocks to define an overall security policy,
that is, a description of desirable properties that we wish
to be maintained against an attacker with well-defined
capabilities.

Generally, these properties are defined with respect to
particular system models and formalisms, which are often
tailor-made to the problem at hand. These different ap-
proaches make it hard to compare the differences between
various definitions, and often obscure subtle properties that
determine their interpretation in counterintuitive scenar-
ios, such as ones involving nontermination, asynchrony
or unusual sets of attacker capabilities. To address this
problem, we propose a new framework for reasoning about
security that is based on modal logic [1], [3], an extension
of propositional logic that enables reasoning about the
interaction of time, choices and possibility with the truth
and falsity of formulae. Formulae of modal logic are
evaluated with respect to a Kripke frame, which encodes
all possible scenarios that may be relevant in the domain
of discourse.

We introduce a way of encoding the security-relevant
behaviour of a system and the potential attackers interact-
ing with it as a special security Kripke frame. Trace-based
program semantics, as often used in the computer security
literature, can be converted into this representation. Having
represented programs in this way, we can show how the
popular security properties of confidentiality, integrity and
robust declassification can be represented as modal logic
formulae that must hold for the security Kripke frame
representing a system. All these notions can be shown
equivalent to their usual runs-and-systems definition under
the given conversion. In the case of robust declassification,
we find that our approach reveals a subtlety about the way
that the accepted definition deals with nontermination and
unbounded delays in asynchronous systems, and suggest
an alternative modal logic formula that defines a similar

property, which may be more appropriate in many sce-
narios. Another advantage of security Kripke frames is
that while program semantics can be converted into them
straightforwardly, they also lend themselves to manual
representation of intuitive abstract scenarios, which can
aid in understanding various security properties.

II. DEFINITIONS

We work in a standard multimodal logic as in [3]
obtained by completing a propositional logic of system
state with two modalities (as in [6]) for each relation R.
If ϕ is a valid formula, then so is [R]ϕ and 〈R〉ϕ. Modal
logics are typically interpreted with respect to a Kripke
frame, which consists of a set of possible worlds W and
relations R ⊆W ×W , corresponding to the relations that
may occur in the formula. For each world w ∈ W , we
assign a truth value to basic propositional statements ϕ by
an entailment relation w � ϕ, and we say w � [R]ϕ iff
for all w′ such that (w,w′) ∈ R, w′ � ϕ, and w � 〈R〉ϕ
iff w � ¬[R]¬ϕ.

We want to define a special class of Kripke frames in
which we can reason about security. As is standard, we
take the set of possible worlds to be complete descriptions
of the possible states the system could be in at a given
point in time. To relate them to each other, we then
introduce relations that relate worlds if one can evolve
into the other over time, and relations that capture the
capabilities (what they can do) and permissions (what we
wish to allow them to achieve) for each participant agent
of the system.

Definition II.1. A security Kripke frame over a set of
worlds W and agents A is a frame equipped with
• a transitive, reflexive time relation T ;
• for each agent A,

– an equivalence relation KA, which relates two
worlds if A can not distinguish them.

– a transitive, reflexive relation WA, which relates
two worlds (w1, w2) if A can perform an action
at w1 to change it into w2.

– a transitive, reflexive relation PA, which relates
two worlds (w1, w2) if A would be permitted to
let the system be in state w2 when in reality it
is in state w1.

For the sake of following a common convention, we
write 2 for [T ] and 3 for 〈T 〉. We often care about
formulae that say that a particular event occurred in a run,



and thus remain true forever if they become true once, so
for all worlds w, w � ϕ iff w � 2ϕ. Such formulae are
called temporally sound (t.s.).

Typical runs-and-systems settings from the program
security literature [3], [7], [2] can be embedded in this
framework, though the details are beyond the scope of
this extended abstract.

Proposition II.2. A computer system specified by a set of
possible initial states, a program and small-step semantics,
which operates on memory locations that take labels from
a security lattice, can be represented as a security Kripke
frame.

III. EXAMPLES OF SECURITY PROPERTIES

In this section, we show some examples of security
properties that can be captured in our framework. The most
basic example is the notion of confidentiality, interpreted
as saying that no secret information is revealed by the
system. In a setting which is deterministic and where
what each agent can see is identical with what they are
permitted to see, this is equivalent to saying that no new
knowledge is gained: to the extent that an agent can’t
predict some knowledge of the system that they will have
in the future, this must be because the fact they will know
depends on something the agent doesn’t currently know,
and thus equivalently isn’t allowed to know. We thus arrive
at the following definition:

Definition III.1. A security Kripke frame satisfies confi-
dentiality if for all agents A, worlds w and t.s. formulae
ϕ,

w � 3[KA]ϕ⇒ [KA]3ϕ.

We can illustrate a typical security Kripke frame in
which confidentiality is violated. Here, we take there to
be two variables, of which the first one is secret (invisible
to A) and the second one is public (visible to A). After
one step, the system will copy the contents of the first
variable into the second one, revealing the secret to A.
The red ellipses depict the equivalence classes of worlds
under KA.

00 10

00 11

As we can see, at the bottom left world, A does not
know that the secret equals 0 (as it can’t distinguish that
world from the bottom-right one, where the secret equals
1), but will eventually come to know. A similarly simple
security property says that an untrusted agent may not
influence trusted memory by setting the initial values of
memory locations they control. Literally, our definition
says that if by performing an action A is capable of and
waiting for its effects to propagate, an effect ϕ can be
achieved, then A must be permitted to directly bring about
ϕ at some point in the future.

Definition III.2. A security Kripke frame satisfies in-
tegrity if for all agents A, worlds w and t.s. formulae ϕ,

w � 〈WA〉3ϕ⇒ 3〈PA〉ϕ.

Both confidentiality and integrity are often considered
too restrictive for real applications. A looser security
property was therefore introduced in [7] and refined further
in [5], [2], which says that a system may release secrets,
but an untrusted agent must not be able to influence
whether a secret is released. Here, it turns out that the
most natural definition that we make happens to differ
from the one in [2] in a crucial way when dealing with
asynchronous systems: if a system leaks a secret in some
cases and loops forever without doing anything in others,
but an attacker can influence it to reliably output the secret,
then this is considered a violation of the first definition
below but not the second. Another similar counterexample
arises when the leak may be delayed by an unboundedly
large amount of time, so there is an infinite number
of potential runs in which the delay is arbitrary long.
The reason for this discrepancy is that definitions as in
[2] compare infinite traces generated by non-terminating
programs, functionally modelling the attacker as having
knowledge that it can’t actually get at any finite point in
time. The easiest way to capture this is to add additional
worlds corresponding to infinite traces, reachable by a
special relation Tω from any finite trace in the same run,
and only KA-related among themselves. Notions such as
“A knows eventually” are thus stronger with 〈Tω〉[KA]
than with 3[KA], as they also cover knowledge gained
“after an infinite number of steps”.

Definition III.3. A Kripke frame satisfies robust declas-
sification if and only if for all worlds w, all agents A and
all t.s. formulae ϕ,

〈WA〉(3[KA]ϕ ∧ ¬[KA]3ϕ)

⇒ 3[KA]ϕ ∧ ¬[KA]3ϕ.

It satisfies infinite r.d. iff

〈WA〉(〈Tω〉[KA]ϕ ∧ ¬[KA]〈Tω〉ϕ)
⇒ 〈Tω〉[KA]ϕ ∧ ¬[KA]〈Tω〉ϕ.

This definition intuitively says that if by performing an
action (〈WA〉), A can bring about a violation of confi-
dentiality, then confidentiality of ϕ is violated regardless.
Taking u to be untrusted, p to be public and s secret, while
e.g. the program p := s should satisfy this property, the
program ifu = 1 then p := s is an archetypal example
of one that violates this definition. We can illustrate it as
follows, using wavy lines to denote the relation WA which
allows A to change the initial value of u:

000 010

100 110

000 010

100 111

Theorem III.4. Confidentiality, integrity and infinite r.d.
are satisfied for a security Kripke frame derived from a
program on security-labelled memory if and only if the
original program satisfies their runs-and-systems coun-
terparts. Moreover, for a synchronous program inducing
a finite set of possible runs, robust declassification and
infinite r.d. are equivalent.



REFERENCES

[1] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cam-
bridge Tracts in Theoretical Computer Science, No. 53. Cambridge
University Press, Cambridge, U.K., 2001.

[2] E. Cecchetti, A. C. Myers, and O. Arden. Nonmalleable information
flow control. In Proc. 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017.

[3] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning About Knowledge. MIT Press, Cambridge, MA, USA,
2003.

[4] J. A. Goguen and J. Meseguer. Security policies and security models.
In Proc. IEEE Symposium on Security and Privacy, pages 11–20.
1982.

[5] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust
declassification. In Proc. 17th IEEE Computer Security Foundations
Workshop, pages 172–186, 2004.

[6] Vaughan R. Pratt. Dynamic logic*. In L. Jonathan Cohen, Jerzy
Łoś, Helmut Pfeiffer, and Klaus-Peter Podewski, editors, Logic,
Methodology and Philosophy of Science VI, volume 104 of Studies in
Logic and the Foundations of Mathematics, pages 251–261. Elsevier,
1982.

[7] S. Zdancewic and A. C. Myers. Robust declassification. In Proc. 14th
IEEE Computer Security Foundations Workshop, pages 15–23, 2001.


	Introduction
	Definitions
	Examples of security properties
	References

